Kennedy,
M. C.
, and
O'Hagan,
A.
, 2001, “
Bayesian Calibration of Computer Models,” J. R. Stat. Soc.,
63(3), pp. 425–464.

[CrossRef]
Conti,
S.
, and
O'Hagan,
A.
, 2010, “
Bayesian Emulation of Complex Multi-Output and Dynamic Computer Models,” J. Stat. Plann. Inference,
140(3), pp. 640–651.

[CrossRef]
Ainsworth,
M.
, and
Oden,
J. T. T.
, 1997, “
A Posteriori Error Estimation in Finite Element Analysis,” Comput. Methods Appl. Mech. Eng.,
142(1–2), pp. 1–88.

[CrossRef]
Sankararaman,
S.
,
McLemore,
K.
,
Mahadevan,
S.
,
Bradford,
S. C.
, and
Peterson,
L. D.
, 2013, “
Test Resource Allocation in Hierarchical Systems Using Bayesian Networks,” AIAA J.,
51(3), pp. 537–550.

[CrossRef]
Li,
C.
, and
Mahadevan,
S.
, 2014, “
Uncertainty Quantification and Output Prediction in Multi-Level Problems,” AIAA Paper No. 2014-0124.

Li,
C.
, and
Mahadevan,
S.
, 2016, “
Role of Calibration, Validation, and Relevance in Multi-Level Uncertainty Integration,” Reliab. Eng. Syst. Saf.,
148, pp. 32–43.

[CrossRef]
Urbina,
A.
, 2009, “
Uncertainty Quantification and Decision Making in Hierarchical Development of Computational Models,” Ph.D. dissertation, Vanderbilt University, Nashville, TN.

Vanlier,
J.
,
Tiemann,
C. A.
,
Hilbers,
P. A. J.
, and
van Riel,
N. A. W.
, 2012, “
A Bayesian Approach to Targeted Experiment Design,” Bioinformatics,
28(8), pp. 1136–1142.

[CrossRef] [PubMed]
Coles,
D.
, and
Prange,
M.
, 2012, “
Toward Efficient Computation of the Expected Relative Entropy for Nonlinear Experimental Design,” Inverse Probl.,
28(5), p. 55019.

[CrossRef]
Sebastiani,
P.
, and
Wynn,
H. P.
, 2000, “
Maximum Entropy Sampling and Optimal Bayesian Experimental Design,” J. R. Stat. Soc.,
62(1), pp. 145–157.

[CrossRef]
Terejanu,
G.
,
Upadhyay,
R. R.
, and
Miki,
K.
, 2012, “
Bayesian Experimental Design for the Active Nitridation of Graphite by Atomic Nitrogen,” Exp. Therm. Fluid Sci.,
36, pp. 178–193.

[CrossRef]
Mullins,
J.
,
Li,
C.
,
Mahadevan,
S.
, and
Urbina,
A.
, 2014, “
Optimal Selection of Calibration and Validation Test Samples Under Uncertainty,” 32nd IMAC, A Conference and Exposition on Structural Dynamics, Orlando, FL, Feb. 3–6, pp. 391–401.

Saltelli,
A.
,
Ratto,
M.
,
Andres,
T.
,
Campolongo,
F.
,
Cariboni,
J.
,
Gatelli,
D.
,
Saisana,
M.
, and
Tarantola,
S.
, 2008, Global Sensitivity Analysis: The Primer,
Wiley,
Chichester, UK.

Hu,
Z.
, and
Mahadevan,
S.
, 2016, “
Global Sensitivity Analysis-Enhanced Surrogate (GSAS) Modeling for Reliability Analysis,” Struct. Multidiscip. Optim.,
53(3), pp. 501–521.

[CrossRef]
Li,
C.
, and
Mahadevan,
S.
, 2016, “
Relative Contributions of Aleatory and Epistemic Uncertainty Sources in Time Series Prediction,” Int. J. Fatigue,
82(Pt. 3), pp. 474–486.

[CrossRef]
Marrel,
A.
,
Iooss,
B.
,
Laurent,
B.
, and
Roustant,
O.
, 2009, “
Calculations of Sobol Indices for the Gaussian Process Metamodel,” Reliab. Eng. Syst. Saf.,
94(3), pp. 742–751.

[CrossRef]
Owen,
A.
, 2013, “
Better Estimation of Small Sobol' Sensitivity Indices,” ACM Trans. Model. Comput. Simul.,
23(2), p. 11.

[CrossRef]
Ginot,
V.
,
Gaba,
S.
,
Beaudouin,
R.
,
Aries,
F.
, and
Monod,
H.
, 2006, “
Combined Use of Local and ANOVA-Based Global Sensitivity Analyses for the Investigation of a Stochastic Dynamic Model: Application to the Case Study of an Individual-Based Model of a Fish Population,” Ecol. Modell.,
193(3–4), pp. 479–491.

[CrossRef]
Zhang,
X.
, and
Pandey,
M. D.
, 2014, “
An Effective Approximation for Variance-Based Global Sensitivity Analysis,” Reliab. Eng. Syst. Saf.,
121, pp. 164–174.

[CrossRef]
Chen,
W.
,
Jin,
R.
, and
Sudjianto,
A.
, 2005, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty,” ASME J. Mech. Des.,
127(5), pp. 875–886.

[CrossRef]
Sobol’,
I. M.
, 2001, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates,” Math. Comput. Simul.,
55(1–3), pp. 271–280.

[CrossRef]
Homma,
T.
, and
Saltelli,
A.
, 1996, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models,” Reliab. Eng. Syst. Saf.,
52(1), pp. 1–17.

[CrossRef]
Sobol’,
I. M.
, and
Myshetskaya,
E. E.
, 2008, “
Monte Carlo Estimators for Small Sensitivity Indices,” Monte Carlo Methods Appl.,
13(5–6), pp. 455–465.

Saltelli,
A.
,
Tarantola,
S.
, and
Chan,
K.
, 1999, “
A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output,” Technometrics,
41(1), pp. 39–56.

[CrossRef]
Tarantola,
S.
, and
Koda,
M.
, 2010, “
Improving Random Balance Designs for the Estimation of First Order Sensitivity Indices,” Procedia: Soc. Behav. Sci.,
2(6), pp. 7753–7754.

[CrossRef]
Sankararaman,
S.
, and
Mahadevan,
S.
, 2013, “
Separating the Contributions of Variability and Parameter Uncertainty in Probability Distributions,” Reliab. Eng. Syst. Saf.,
112, pp. 187–199.

[CrossRef]
Li,
C.
, and
Mahadevan,
S.
, 2015, “
Global Sensitivity Analysis for System Response Prediction Using Auxiliary Variable Method,” AIAA Paper No. 2015-0661.

Schrijver,
A.
, 1998, Theory of Linear and Integer Programming,
Wiley,
Chichester, UK.

Alrefaei,
M. H.
, and
Andradóttir,
S.
, 1999, “
A Simulated Annealing Algorithm With Constant Temperature for Discrete Stochastic Optimization,” Manage. Sci.,
45(5), pp. 748–764.

[CrossRef]
Red-Horse,
J. R.
, and
Paez,
T. L.
, 2008, “
Sandia National Laboratories Validation Workshop: Structural Dynamics Application,” Comput. Methods Appl. Mech. Eng.,
197(29–32), pp. 2578–2584.

[CrossRef]
Chopra,
A. K.
, 2011, Dynamics of Structures: Theory and Applications to Earthquake Engineering,
Prentice Hall,
Upper Saddle River, NJ.

Sankararaman,
S.
, and
Mahadevan,
S.
, 2015, “
Integration of Model Verification, Validation, and Calibration for Uncertainty Quantification in Engineering Systems,” Reliab. Eng. Syst. Saf.,
138, pp. 194–209.

[CrossRef]
Sankararaman,
S.
, and
Mahadevan,
S.
, 2013, “
Assessing the Reliability of Computational Models Under Uncertainty,” AIAA Paper No. 2013-1873.

Mullins,
J.
,
Li,
C.
,
Sankararaman,
S.
,
Mahadevan,
S.
, and
Urbina,
A.
, 2013, “
Uncertainty Quantification Using Multi-Level Calibration and Validation Data,” AIAA Paper No. 2013-1872.