Tiesler,
H.
,
Kirby,
R. M.
,
Xiu,
D.
, and
Preusser,
T.
, 2012, “
Stochastic Collocation for Optimal Control Problems With Stochastic PDE Constraints,” SIAM J. Control Optim.,
50(5), pp. 2659–2682.

[CrossRef]
Hays,
J.
,
Sandu,
A.
,
Sandu,
C.
, and
Hong,
D.
, 2011, “
Motion Planning of Uncertain Fully-Actuated Dynamical Systems: A Forward Dynamics Formulation,” ASME Paper No. DETC2011-48233.

Chauvieère,
C.
,
Hesthaven,
J. S.
, and
Lurati,
L.
, 2006, “
Computational Modeling of Uncertainty in Time-Domain Electromagnetics,” SIAM J. Sci. Comput.,
28(2), pp. 751–775.

[CrossRef]
Bui-Thanh,
T.
, and
Ghattas,
O.
, 2014, “
An Analysis of Infinite Dimensional Bayesian Inverse Shape Acoustic Scattering and Its Numerical Approximation,” SIAM J. Uncertainty Quantif.,
2(1), pp. 203–222.

[CrossRef]
Hu,
Z.
,
Smith,
R. C.
,
Burch,
N.
,
Hays,
M.
, and
Oates,
W. S.
, 2014, “
A Modeling and Uncertainty Quantification Framework for a Flexible Structure With Macrofiber Composite Actuators Operating in Hysteretic Regimes,” J. Intell. Mater. Syst. Struct.,
25(2), pp. 204–228.

[CrossRef]
Crews,
J. H.
,
McMahan,
J. A.
,
Smith,
R. C.
, and
Hannen,
J. C.
, 2013, “
Quantification of Parameter Uncertainty for Robust Control of Shape Memory Alloy Bending Actuators,” Smart Mater. Struct.,
22(11), p. 115021.

[CrossRef]
Najm,
H. N.
, 2009, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics,” Annu. Rev. Fluid Mech.,
41(1), pp. 35–52.

[CrossRef]
Yu,
Y.
,
Zhao,
M.
,
Lee,
T.
,
Pestieau,
N.
,
Bo,
W.
,
Glimm,
J.
, and
Grove,
J.
, 2006, “
Uncertainty Quantification for Chaotic Computational Fluid Dynamics,” J. Comput. Phys.,
217(1), pp. 200–216.

[CrossRef]
Knio,
O.
, and
Maître,
O. L.
, 2006, “
Uncertainty Propagation in CFD Using Polynomial Chaos Decomposition,” Fluid Dyn. Res.,
38(9), pp. 616–640.

[CrossRef]
Xiu,
D.
, and
Karniadakis,
G. E.
, 2003, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos,” J. Comput. Phys.,
187(1), pp. 137–167.

[CrossRef]
Cui,
T.
,
Marzouk,
Y. M.
, and
Willcox,
K. E.
, 2014, “
Data-Driven Model Reduction for the Bayesian Solution of Inverse Problems,” Int. J. Numer. Methods Eng.,
102(5), pp. 966–990.

[CrossRef]
Allaire,
D.
, and
Willcox,
K.
, 2010, “
Surrogate Modeling for Uncertainty Assessment With Application to Aviation Environmental System Models,” AIAA J.,
48(8), pp. 1791–1803.

[CrossRef]
Pettit,
C. L.
, 2004, “
Uncertainty Quantification in Aeroelasticity: Recent Results and Research Challenges,” J. Aircr.,
41(5), pp. 1217–1229.

[CrossRef]
Green,
L. L.
,
Lin,
H.-Z.
, and
Khalessi,
M. R.
, 2002, “
Probabilistic Methods for Uncertainty Propagation Applied to Aircraft Design,” AIAA Paper No. 2002-3140.

Hollinger,
D. Y.
, and
Richardson,
A. D.
, 2005, “
Uncertainty in Eddy Covariance Measurements and Its Application to Physiological Models,” Tree Physiol.,
25(7), pp. 873–885.

[CrossRef] [PubMed]
Chen,
P.
,
Quarteroni,
A.
, and
Rozza,
G.
, 2013, “
Simulation-Based Uncertainty Quantification of Human Arterial Network Hemodynamics,” Int. J. Numer. Methods Biomed. Eng.,
29(6), pp. 698–721.

[CrossRef]
Estep,
D.
, and
Neckels,
D.
, 2006, “
Fast and Reliable Methods for Determining the Evolution of Uncertain Parameters in Differential Equations,” J. Comput. Phys.,
213(2), pp. 530–556.

[CrossRef]
Banks,
H. T.
,
Hu,
S.
,
Jang,
T.
, and
Kwon,
H.-D.
, 2012, “
Modeling and Optimal Control of Immune Response of Renal Transplant Recipients,” J. Biol. Dyn.,
6(2), pp. 539–567.

[CrossRef] [PubMed]
Floris,
F.
,
Bush,
M.
,
Cuypers,
M.
,
Roggero,
F.
, and
Syversveen,
A. R.
, 2001, “
Methods for Quantifying the Uncertainty of Production Forecasts: A Comparative Study,” Pet. Geosci.,
7(S), pp. S87–S96.

[CrossRef]
Kovscek,
A.
, and
Wang,
Y.
, 2005, “
Geologic Storage of Carbon Dioxide and Enhanced Oil Recovery. I. Uncertainty Quantification Employing a Streamline Based Proxy for Reservoir Flow Simulation,” Energy Convers. Manage.,
46(11–12), pp. 1920–1940.

[CrossRef]
Bui-Thanh,
T.
,
Ghattas,
O.
,
Martin,
J.
, and
Stadler,
G.
, 2013, “
A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems—Part I: The Linearized Case, With Application to Global Seismic Inversion,” SIAM J. Sci. Comput.,
35(6), pp. A2494–A2523.

[CrossRef]
Reed,
H.
, and
Hoppe,
W.
, 2016, “
A Model-Based, Bayesian Characterization of Subsurface Corrosion Parameters in Composite Multi-Layered Structures,” AIP Conf. Proc.,
1706(1), p. 120010.

McMahan,
J. A.
, and
Criner,
A. K.
, 2016, “
Statistical Flaw Characterization Through Bayesian Shape Inversion From Scattered Wave Observations,” AIP Conf. Proc.,
1706(1), p. 130005.

McMahan,
J. A.
,
Aldrin,
J. C.
,
Shell,
E.
, and
Oneida,
E.
, 2017, “
Bayesian Flaw Characterization From Eddy Current Measurements With Grain Noise,” AIP Conf. Proc.,
1806(1), p. 110014.

Ghanem,
R.,
Higdon,
D., and
Owhadi,
H.
, eds., 2017, Handbook of Uncertainty Quantification,
Springer International Publishing,
Cham, Switzerland.

Smith,
R. C.
, 2013, Uncertainty Quantification: Theory, Implementation, and Applications, Vol.
12,
SIAM,
Philadelphia, PA.

Sullivan,
T. J.
, 2015, Introduction to Uncertainty Quantification (Texts in Applied Mathematics), 1st ed., Vol.
63,
Springer International Publishing,
Cham, Switzerland.

[CrossRef]
Calvetti,
D.
, and
Somersalo,
E.
, 2007, An Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing, Vol.
2,
Springer Science & Business Media,
New York.

Tarantola,
A.
, 2005, Inverse Problem Theory and Methods for Model Parameter Estimation,
SIAM,
Philadelphia, PA.

[CrossRef]
Stuart,
A. M.
, 2010, “
Inverse Problems: A Bayesian Perspective,” Acta Numer.,
19, pp. 451–559.

[CrossRef]
Roache,
P. J.
, 1998, Verification and Validation in Computational Science and Engineering, Vol.
895,
Hermosa,
Albuquerque, NM.

Roy,
C. J.
, 2005, “
Review of Code and Solution Verification Procedures for Computational Simulation,” J. Comput. Phys.,
205(1), pp. 131–156.

[CrossRef]
Oberkampf,
W. L.
, and
Trucano,
T. G.
, 2002, “
Verification and Validation in Computational Fluid Dynamics,” Prog. Aerosp. Sci.,
38(3), pp. 209–272.

[CrossRef]
Roache,
P. J.
, 2002, “
Code Verification by the Method of Manufactured Solutions,” ASME J. Fluids Eng.,
124(1), pp. 4–10.

[CrossRef]
Malaya,
N.
,
Estacio-Hiroms,
K. C.
,
Stogner,
R. H.
,
Schulz,
K. W.
,
Bauman,
P. T.
, and
Carey,
G. F.
, 2012, “
MASA: A Library for Verification Using Manufactured and Analytical Solutions,” Eng. Comput.,
29(4), pp. 487–496.

Raju,
A.
,
Roy,
C.
, and
Hopkins,
M.
, 2005, “
On the Generation of Exact Solutions Using the Method of Nearby Problems,” AIAA Paper No. 2005-684.

Adams,
B.
,
Hooper,
R. W.
,
Lewis,
A.
,
McMahan,
J. A., Jr.
,
Smith,
R. C.
,
Swiler,
L. P.
, and
Williams,
B. J.
, 2014, “
User Guidelines and Best Practices for CASL VUQ Analysis Using DAKOTA,” Sandia National Laboratory, Albuquerque, NM, Technical Report No. 2014-2864.

https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/SAND-CaslDakotaManual.pdf
Diaconis,
P.
, 2009, “
The Markov Chain Monte Carlo Revolution,” Bull. Am. Math. Soc.,
46(2), pp. 179–205.

[CrossRef]
Chib,
S.
, and
Greenberg,
E.
, 1995, “
Understanding the Metropolis-Hastings Algorithm,” Am. Stat.,
49(4), pp. 327–335.

Haario,
H.
,
Laine,
M.
,
Mira,
A.
, and
Saksman,
E.
, 2006, “
DRAM: Efficient Adaptive MCMC,” Stat. Comput.,
6(4), pp. 339–354.

[CrossRef]
Solonen,
A.
,
Ollinaho,
P.
,
Laine,
M.
,
Haario,
H.
,
Tamminen,
J.
, and
Järvinen,
H.
, 2012, “
Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection,” Bayesian Anal.,
7(3), pp. 715–736.

[CrossRef]
Neal,
R. M.
, 2011, “
MCMC Using Hamiltonian Dynamics,” Handbook Markov Chain Monte Carlo, CRC Press, Boca Raton, FL.

[CrossRef]
Gregory,
K. B.
,
Carroll,
R. J.
,
Baladandayuthapani,
V.
, and
Lahiri,
S. N.
, 2015, “
A Two-Sample Test for Equality of Means in High Dimension,” J. Am. Stat. Assoc.,
110(510), pp. 837–849.

[CrossRef] [PubMed]
Cai,
T.
,
Liu,
W.
, and
Xia,
Y.
, 2013, “
Two-Sample Covariance Matrix Testing and Support Recovery in High-Dimensional and Sparse Settings,” J. Am. Stat. Assoc.,
108(501), pp. 265–277.

[CrossRef]
DeGroot,
M. H.
,
Schervish,
M. J.
,
Fang,
X.
,
Lu,
L.
, and
Li,
D.
, 1986, Probability and Statistics, Vol.
2,
Addison-Wesley,
Reading, MA.

Hastie,
T.
,
Tibshirani,
R.
,
Friedman,
J.
,
Hastie,
T.
,
Friedman,
J.
, and
Tibshirani,
R.
, 2009, The Elements of Statistical Learning, Vol.
2,
Springer,
New York.

[CrossRef]
Kuhn,
M.
, and
Johnson,
K.
, 2013, Applied Predictive Modeling,
Springer,
New York.

[CrossRef]
Rasmussen,
C. E.
, and
Williams,
C. K.
, 2006, Gaussian Processes for Machine Learning, Vol.
1,
MIT Press,
Cambridge, MA.

Seber,
G. A.
, and
Lee,
A. J.
, 2012, Linear Regression Analysis, Vol.
936,
Wiley,
Hoboken, NJ.

Hamilton,
J. D.
, 1994, Time Series Analysis, Vol.
2,
Princeton University Press,
Princeton, NJ.

Engle,
R.
, and
Kelly,
B.
, 2012, “
Dynamic Equicorrelation,” J. Bus. Econ. Stat.,
30(2), pp. 212–228.

[CrossRef]
Alexander,
C.
, and
Lazar,
E.
, 2006, “
Normal Mixture Garch (1, 1): Applications to Exchange Rate Modelling,” J. Appl. Econ.,
21(3), pp. 307–336.

[CrossRef]
Székely,
G. J.
, and
Rizzo,
M. L.
, 2013, “
Energy Statistics: A Class of Statistics Based on Distances,” J. Stat. Plann. Inference,
143(8), pp. 1249–1272.

[CrossRef]
McMahan,
J. A.
, 2016, “
LinVer-Matlab,” GitHub, Inc., Beaverton, OR, accessed Dec. 7, 2016,

https://github.com/jmcmahan/LinVer-Matlab