Hu,
K. T.
, and
Orient,
G. E.
, “
The 2014 Sandia V&V Challenge Problem: A Case Study in Simulation, Analysis, and Decision Support,” ASME J. Verif. Valid. Uncertainty Quantif.,
1(1).

Hills,
R. G.
, and
Trucano,
T. G.
, 1999, “
Statistical Validation of Engineering and Scientific Models: Background,” Sandia National Laboratories, Report No. SAND99-1256.

Thacker,
B. H.
,
Doebling,
S. W.
,
Hemez,
F. M.
,
Anderson,
M. C.
,
Pepin,
J. E.
, and
Rodriguez,
E. A.
, 2004, “
Concepts of Model Verification and Validation,”
Los Alamos National Laboratory,
Los Alamos, NM, Report No. LA-14167.

Babuska,
I.
, and
Oden,
J. T.
, 2004, “
Verification and Validation in Computational Engineering and Science: Basic Concepts,” Comput. Methods Appl. Mech. Eng.,
193(36–38), pp. 4057–4066.

[CrossRef]
Xi,
Z.
,
Fu,
Y.
, and
Yang,
R. J.
, 2013, “
Model Bias Characterization in the Design Space Under Uncertainty,” Int. J. Performability Eng.,
9(4), pp. 433–444.

Zhan,
Z.
,
Fu,
Y.
, and
Yang,
R. J.
, 2013, “
On Stochastic Model Interpolation and Extrapolation Methods for Vehicle Design,” SAE Int. J. Mater. Manuf.,
6(3), pp. 517–531.

[CrossRef]
Zhan,
Z.
,
Fu,
Y.
,
Yang,
R. J.
,
Xi,
Z.
, and
Shi,
L.
, 2012, “
A Bayesian Inference Based Model Interpolation and Extrapolation,” SAE Int. J. Mater. Manuf.,
5(2), pp. 357–364.

[CrossRef]
Jiang,
Z.
,
Chen,
W.
,
Fu,
Y.
, and
Yang,
R. J.
, 2013, “
Reliability-Based Design Optimization With Model Bias and Data Uncertainty,” SAE Int. J. Mater. Manuf.,
6(3), pp. 502–516.

[CrossRef]
Xi,
Z.
,
Fu,
Y.
, and
Yang,
R.
, 2013, “
An Ensemble Approach for Model Bias Prediction,” SAE Int. J. Mater. Manf.,
6(3), pp. 532–539.

[CrossRef]
Higdon,
D.
,
Gattiker,
J.
,
Williams,
B.
, and
Rightley,
M.
, 2008, “
Computer Model Calibration Using High-Dimensional Output,” J. Am. Stat. Assoc.,
103(482), pp. 570–583.

[CrossRef]
Pearson,
K.
, 1901, “
Mathematical Contributions to the Theory of Evolution. X. Supplement to a Memoir on Skew Variation,” Philos. Trans. R. Soc. London,
197(287–299), pp. 443–459.

[CrossRef]
Xi,
Z.
,
Hu,
C.
, and
Youn,
B. D.
, 2012, “
A Comparative Study of Probability Estimation Methods for Reliability Analysis,” Struct. Multidiscip. Optim.,
45(1), pp. 33–52.

[CrossRef]
Daniels,
H. E.
, 1954, “
Saddlepoint Approximations in Statistics,” Ann. Math. Stat.,
25(4), pp. 631–650.

[CrossRef]
Jaynes,
E. T.
, 1957, “
Information Theory and Statistical Mechanics,” Phys. Rev.,
106(4), pp. 620–630.

[CrossRef]
Johnson,
N. L.
,
Kotz,
S.
, and
Balakrishnan,
N.
, 1994, Continuous Univariate Distributions,
Wiley,
New York.

Rossi,
V.
, and
Vila,
J. P.
, 2006, “
Bayesian Multioutput Feedforward Neural Networks Comparison: A Conjugate Prior Approach,” IEEE Trans. Neural Networks,
17(1), pp. 35–47.

[CrossRef]
George,
E. I.
, and
McCulloch,
R. E.
, 1997, “
Approaches for Bayesian Variable Selection,” Stat. Sin.,
7(2), pp. 339–373.

Wang,
C.
, and
Blei,
D. M.
, 2013, “
Variational Inference in Nonconjugate Models,” J. Mach. Learn. Res.,
14(1), pp. 1005–1031.

Zhu,
J.
, and
Xing,
E. P.
, 2009, “
Maximum Entropy Discrimination Markov Networks,” J. Mach. Learn. Res.,
10, pp. 2531–2569.

Berg,
B. A.
, 2004, Markov Chain Monte Carlo Simulations and Their Statistical Analysis,
World Scientific Publishing,
Singapore.

Youn,
B. D.
,
Xi,
Z.
, and
Wang,
P.
, 2008, “
Eigenvector Dimension Reduction (EDR) Method for Sensitivity-Free Probability Analysis,” Struct. Multidiscip. Optim.,
37(1), pp. 13–28.

[CrossRef]
Hu,
C.
, and
Youn,
B. D.
, 2011, “
Adaptive-Sparse Polynomial Chaos Expansion for Reliability Analysis and Design of Complex Engineering Systems,” Struct. Multidiscip. Optim.,
43(3), pp. 419–442.

[CrossRef]
Blatman,
G.
, and
Sudret,
B.
, 2010, “
An Adaptive Algorithm to Build Up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis,” Probab. Eng. Mech.,
25(2), pp. 183–197.

[CrossRef]
Oladyshkin,
S.
, and
Nowak,
W.
, 2012, “
Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion,” Reliab. Eng. Syst. Saf.,
106, pp. 179–190.

[CrossRef]
Coelho,
R. F.
,
Lebon,
J.
, and
Bouillard,
P.
, 2011, “
Hierarchical Stochastic Metamodels Based on Moving Least Squares and Polynomial Chaos Expansion: Application to the Multiobjective Reliability-Based Optimization of Space Truss Structures,” Struct. Multidiscip. Optim.,
43(5), pp. 707–729.

[CrossRef]
Le Maître,
O. P.
,
Reagan,
M.
,
Najm,
H. N.
,
Ghanem,
R. G.
, and
Knio,
O. M.
, 2002, “
A Stochastic Projection Method for Fluid Flow: II. Random Process,” J. Comput. Phys.,
181(1), pp. 9–44.

[CrossRef]
Gerstner,
T.
, and
Griebel,
M.
, 1998, “
Numerical Integration Using Sparse Grids,” Numer. Algorithms,
18(3–4), pp. 209–232.

[CrossRef]
Rahman,
S.
, and
Xu,
H.
, 2004, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics,” Probab. Eng. Mech.,
19(4), pp. 393–408.

[CrossRef]
Myers,
H. R.
, and
Montgomery,
D. C.
, 1995, Response Surface Methodology,
Wiley,
New York.

Kennedy,
M. C.
, and
O’Hagan,
A.
, 2002, “
Bayesian Calibration of Computer Models,” J. R. Stat. Soc. B,
63, pp. 425–464.

[CrossRef]
Ferson,
S.
,
Oberkampf,
W. L.
, and
Ginzburg,
L.
, 2008, “
Model Validation and Predictive Capability for the Thermal Challenge Problem,” Comput. Methods Appl. Mech. Eng.,
197(29–32), pp. 2408–2430.

[CrossRef]
Xi,
Z.
,
Pan,
H.
,
Fu,
Y.
, and
Yang,
R. J.
, 2014, “
A Copula-Based Approach for Model Bias Characterization,” SAE Int. J. Passeng. Cars: Mech. Syst.,
7(2), pp. 781–786.

[CrossRef]
Huard,
D.
,
Evin,
G.
, and
Favre,
A. C.
, 2006, “
Bayesian Copula Selection,” Comput. Stat. Data Anal.,
51(2), pp. 809–822.

[CrossRef]
Roser,
B. N.
, 1999, An Introduction to Copulas,
Springer,
New York.

Fermanian,
J. D.
, 2005, “
Goodness-of-Fit Tests for Copulas,” J. Multivariate Anal.,
95(1), pp. 119–152.

[CrossRef]
Jaynes,
E. T.
, and
Bretthorst,
G. L.
, 2003, Probability Theory: The Logic of Science,
Cambridge University Press,
Cambridge, UK.

Hasofer,
A. M.
, and
Lind,
N. C.
, 1974, “
Exact and Invariant Second-Moment Code Format,” ASCE J. Eng. Mech.,
100(1), pp. 111–121.

Tvedt,
L.
, 1984, Two Second-Order Approximations to the Failure Probability: Section on Structural Reliability,
A/S Vertas Research,
Hovik, Norway.