Roy,
C.
, and
Oberkampf,
W.
, 2011, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing,” Comput. Methods Appl. Mech. Eng.,
200(25–28), pp. 2131–2144.

[CrossRef]
Romero,
V.
,
Luketa,
A.
, and
Sherman,
M.
, 2010, “
Application of a Versatile ‘Real-Space’ Validation Methodology to a Fire Model,” J. Thermophys. Heat Transfer,
24(4), pp. 730–744.

[CrossRef]
Hills,
R. G.
, and
Leslie,
I. H.
, 2003, “
Statistical Validation of Engineering and Scientific Models: Validation Experiments to Application,” Sandia Technical Report No. SAND2003-0706.

Trucano,
T.
,
Swiler,
L.
,
Igusa,
T.
,
Oberkampf,
W.
, and
Pilch,
M.
, 2006, “
Calibration, Validation, and Sensitivity Analysis: What's What,” Reliab. Eng. Syst. Saf.,
91(10–11), pp. 1331–1357.

[CrossRef]
Higdon,
D.
,
Kennedy,
M.
,
Cavendish,
J.
,
Cafeo,
J.
, and
Ryne,
R.
, 2004, “
Combining Field Data and Computer Simulations for Calibration and Prediction,” SIAM J. Sci. Comput.,
26(2), pp. 448–466.

[CrossRef]
Sankararaman,
S.
, and
Mahadevan,
S.
, 2012, “
Comprehensive Framework for Integration of Calibration, Verification and Validation,” AIAA Paper No. 2012-1366.

Arendt,
P. D.
,
Apley,
D. W.
, and
Chen,
W.
, 2012, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability,” ASME J. Mech. Des.,
134(10), p. 100908.

[CrossRef]
Ling,
Y.
,
Mullins,
J.
, and
Mahadevan,
S.
, 2014, “
Selection of Model Discrepancy Priors in Bayesian Calibration,” J. Comput. Phys.,
276, pp. 665–680.

[CrossRef]
Hartmann,
C.
,
Smeyers-Verbeke,
J.
,
Penninckx,
W.
,
Heyden,
Y. V.
,
Vankeerberghen,
P.
, and
Massart,
D.
, 1995, “
Reappraisal of Hypothesis Testing for Method Validation: Detection of Systematic Error by Comparing the Means of Two Methods or of Two Laboratories,” Anal. Chem.,
67(24), pp. 4491–4499.

[CrossRef]
Hills,
R. G.
, and
Trucano,
T. G.
, 1999, “
Statistical Validation of Engineering and Scientific Models: Background,” Sandia Technical Report No. SAND99-1256.

Rebba,
R.
, and
Mahadevan,
S.
, 2006, “
Validation and Error Estimation of Computational Models,” Reliab. Eng. Syst. Saf.,
91(10–11), pp. 1390–1397.

[CrossRef]
Rebba,
R.
, and
Mahadevan,
S.
, 2006, “
Validation of Models With Multivariate Output,” Reliab. Eng. Syst. Saf.,
91(8), pp. 861–871.

[CrossRef]
O'Hagan,
A.
, 1995, “
Fractional Bayes Factors for Model Comparison,” J. R. Stat. Soc., Ser. B (Methodological),
57(1), pp. 99–138.

Wang,
S.
,
Chen,
W.
, and
Tsui,
K.-L.
, 2009, “
Bayesian Validation of Computer Models,” Technometrics,
51(4), pp. 439–451.

[CrossRef]
Ferson,
S.
,
Oberkampf,
W.
, and
Ginzburg,
L.
, 2008, “
Model Validation and Predictive Capability for the Thermal Challenge Problem,” Comput. Methods Appl. Mech. Eng.,
197(29–32), pp. 2408–2430.

[CrossRef]
Ferson,
S.
, and
Oberkampf,
W.
, 2009, “
Validation of Imprecise Probability Models,” Int. J. Reliab. Saf.,
3(1), pp. 3–22.

[CrossRef]
Rebba,
R.
, and
Mahadevan,
S.
, 2008, “
Computational Methods for Model Reliability Assessment,” Reliab. Eng. Syst. Saf.,
93(8), pp. 1197–1207.

[CrossRef]
Sankararaman,
S.
, and
Mahadevan,
S.
, 2013, “
Assessing the Reliability of Computational Models Under Uncertainty,” AIAA Paper No. 2013-1873.

O'Hagan,
A.
, and
Oakley,
J. E.
, 2004, “
Probability is Perfect, but We Can't Elicit It Perfectly,” Reliab. Eng. Syst. Saf.,
85(1–3), pp. 239–248.

[CrossRef]
Jaulin,
L.
,
Kieffer,
M.
,
Didrit,
O.
, and
Walter,
E.
, 2001, Applied Interval Analysis,
Springer-Verlag,
New York.

Shafer,
G.
, 1976, A Mathematical Theory of Evidence,
Princeton University Press,
Princeton, NJ.

Dubois,
D.
, and
Prade,
H.
, 1986, Possibility Theory: An Approach to Computerized Processing of Uncertainty,
Plenum Press,
New York.

Ross,
T. J.
, 1995, Fuzzy Logic With Engineering Applications,
McGraw-Hill,
New York.

Klir,
G. J.
, and
Wierman,
M. J.
, 1998, Uncertainty-Based Information: Elements of Generalized Information Theory, 2nd ed., Vol.
15,
Physica-Verlag,
Heidelberg, DE.

Helton,
J.
, and
Sallaberry,
C.
, 2012, “
Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation,” Uncertainty Quantification in Scientific Computing, IFIP Advances in Information and Communication Technology, Vol.
377,
Springer,
Berlin, pp. 60–77.

Oberkampf,
W. L.
,
Helton,
J. C.
,
Joslyn,
C. A.
,
Wojtkiewicz,
S. F.
, and
Ferson,
S.
, 2004, “
Challenge Problems: Uncertainty in System Response Given Uncertain Parameters,” Reliab. Eng. Syst. Saf.,
85(1–3), pp. 11–19.

[CrossRef]
Kiureghian,
A.
, 2009, “
Aleatory or Epistemic? Does It Matter?” Struct. Saf.,
31(2), pp. 105–112.

[CrossRef]
Hu,
K.
, 2014, “
2014 V&V Challenge: Problem Statement,” Sandia Technical Report No. SAND2013-10486P.

Kennedy,
M. C.
, and
O'Hagan,
A.
, 2001, “
Bayesian Calibration of Computer Models,” J. R. Stat. Soc., Ser. B (Stat. Methodol.),
63(5), pp. 425–464.

[CrossRef]
Metropolis,
N.
,
Rosenbluth,
A.
,
Rosenbluth,
M.
,
Teller,
A.
, and
Teller,
E.
, 1953, “
Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys.,
21(6), p. 1087.

[CrossRef]
Hastings,
W.
, 1970, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications,” Biometrika,
57(1), pp. 97–109.

[CrossRef]
Gilks,
W.
, and
Wild,
P.
, 1992, “
Adaptive Rejection Sampling for Gibbs Sampling,” J. R. Stat. Soc., Ser. C (Appl. Stat.),
41(2), pp. 337–348.

Neal,
R.
, 2003, “
Slice Sampling,” Ann. Stat.,
31(3), pp. 705–741.

[CrossRef]
Cressie,
N. A. C.
, 1993, Statistics for Spatial Data, Revised edition,
Wiley,
New York.

Sacks,
J.
,
Schiller,
S. B.
, and
Welch,
W.
, 1989, “
Design of Computer Experiments,” Technometrics,
31(1), pp. 41–47.

[CrossRef]
Xiu,
D.
, 2010, Numerical Methods for Stochastic Computations: A Spectral Method Approach,
Princeton University Press,
Princeton, NJ.

Press,
W. H.
,
Teukolsky,
S. A.
,
Vetterling,
W. T.
, and
Flanner,
B. P.
, 2007, Numerical Recipes: The Art of Scientific Computing, 3rd ed.,
Cambridge University Press,
New York.

McCulloch,
W.
, and
Pitts,
W.
, 1943, “
A Logical Calculus of Ideas Immanent in Nervous Activity,” Bull. Math. Biophys.,
5(4), pp. 115–133.

[CrossRef]
Rasmussen,
C. E.
, and
Williams,
C. K. I.
, 2006, Gaussian Processes for Machine Learning,
The MIT Press,
Cambridge, MA.

Johnson,
N. L.
, 1949, “
Systems of Frequency Curves Generated by Methods of Translation,” Biometrika,
36(1/2), pp. 149–176.

[CrossRef] [PubMed]
DeBrota,
D. J.
,
Roberts,
S. D.
,
Dittus,
R. S.
,
Wilson,
J. R.
,
Swain,
J. J.
, and
Venkatraman,
S.
, 1988, “
Input Modeling With the Johnson System of Distributions,” Winter Simulations Conference (WSC '88),
M. Abrams
,
P. Haigh
, and
J. Comfort
, eds., pp. 165–179.

Marhadi,
K.
,
Venkataraman,
S.
, and
Pai,
S. S.
, 2012, “
Quantifying Uncertainty in Statistical Distribution of Small Sample Data Using Bayesian Inference of Unbounded Johnson Distribution,” Int. J. Reliab. Saf.,
6(4), pp. 311–337.

[CrossRef]
Sankararaman,
S.
, and
Mahadevan,
S.
, 2013, “
Separating the Contributions of Variability and Parameter Uncertainty in Probability Distributions,” Reliab. Eng. Syst. Saf.,
112, pp. 187–199.

[CrossRef]
Ellingwood,
B.
,
Galambos,
T.
,
MacGregor,
J.
, and
Cornell,
C. A.
, 1980, Development of a Probability Based Load Criterion for American National Standard A58: Building Code Requirements for Minimum Design Loads in Buildings and Other Structures, Vol.
577,
National Bureau of Standards Publication, Gaithersburg, MD.