Oliver,
D. S.
,
Reynolds,
A. C.
, and
Liu,
N.
, 2008, Inverse Theory for Petroleum Reservoir Characterization and History Matching,
Cambridge University Press,
Cambridge, UK.

Tarantola,
A.
, 2005, Inverse Problem Theory and Methods for Model Parameter Estimation,
Society for Industrial and Applied Mathematics,
Philadelphia, PA.

Jaynes,
E. T.
, and
Bretthorst,
G. L.
, 2003, Probability Theory: The Logic of Science,
Cambridge University Press,
Cambridge, UK.

Bilionis,
I.
,
Drewniak,
B. A.
, and
Constantinescu,
E. M.
, 2015, “
Crop Physiology Calibration in the CLM,” Geosci. Model Dev.,
8(4), pp. 1071–1083.

[CrossRef]
Kalnay,
E.
, 2002, Atmospheric Modeling, Data Assimilation and Predictability, 1st ed.,
Cambridge University Press,
Cambridge, UK.

Navon,
I. M.
, 2009, “
Data Assimilation for Numerical Weather Prediction: A Review,” Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications,
K. P. Seon
and
L. Xu
, eds.,
Springer,
Berlin, pp. 21–65.

Hill,
M. C.
, and
Tiedeman,
C. R.
, 2006, Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty,
Wiley,
New York.

Tikhonov,
A. N.
, 1963, “
Regularization of Incorrectly Formulated Problems and the Regularization,” Dokl. Akad. Nauk SSSR,
151, pp. 501–504.

Fichtner,
A.
, 2010, Full Seismic Waveform Modelling and Inversion (Advances in Geophysical and Environmental Mechanics and Mathematics),
Springer,
Berlin.

Metropolis,
N.
,
Rosenbluth,
A. W.
,
Rosenbluth,
M. N.
,
Teller,
A. H.
, and
Teller,
E.
, 1953, “
Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys.,
21(6), pp. 1087–1092.

[CrossRef]
Hastings,
W. K.
, 1970, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications,” Biometrika,
57(1), pp. 97–109.

[CrossRef]
Haario,
H.
,
Saksman,
E.
, and
Tamminen,
J.
, 2001, “
An Adaptive Metropolis Algorithm,” Bernoulli,
7(2), pp. 223–242.

[CrossRef]
Mira,
A.
, 2001, “
On Metropolis–Hastings Algorithms With Delayed Rejection,” Metron,
59(3–4), pp. 231–241.

Tierney,
L.
, and
Antonietta,
M.
, 1999, “
Some Adaptive Monte Carlo Methods for Bayesian Inference,” Stat. Med.,
18(17–18), pp. 2507–2515.

[CrossRef] [PubMed]
Haario,
H.
,
Laine,
M.
,
Mira,
A.
, and
Saksman,
E.
, 2006, “
DRAM: Efficient Adaptive MCMC,” Stat. Comput.,
16(4), pp. 339–354.

[CrossRef]
Roberts,
G. O.
, and
Rosenthal,
J. S.
, 1998, “
Optimal Scaling of Discrete Approximations to Langevin Diffusions,” J. R. Stat. Soc. Ser. B,
60(1), pp. 255–268.

[CrossRef]
Duane,
S.
,
Kennedy,
A. D.
,
Pendleton,
B. J.
, and
Roweth,
D.
, 1987, “
Hybrid Monte Carlo,” Phys. Lett. B,
195(2), pp. 216–222.

[CrossRef]
Girolami,
M.
, and
Calderhead,
B.
, 2011, “
Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods,” J. R. Stat. Soc. Ser. B,
73(2), pp. 123–214.

[CrossRef]
Parno,
M. D.
, 2015, “
Transport Maps for Accelerated Bayesian Computation,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Kennedy,
M. C.
, and
O'Hagan,
A.
, 2001, “
Bayesian Calibration of Computer Models,” J. R. Stat. Soc. Ser. B,
63(3), pp. 425–464.

[CrossRef]
Ghanem,
R. G.
, and
Spanos,
P. D.
, 2003, Stochastic Finite Elements: A Spectral Approach,
Dover Publications Inc.,
Mineola, NY.

Xiu,
D.
, and
Karniadakis,
G. E.
, 2002, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM J. Sci. Comput.,
24(2), pp. 619–644.

[CrossRef]
Marzouk,
Y.
, and
Xiu,
D.
, 2009, “
A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems,” Commun. Comput. Phys.,
6(4), pp. 826–847.

[CrossRef]
Marzouk,
Y. M.
,
Najm,
H. N.
, and
Rahn,
L. A.
, 2007, “
Stochastic Spectral Methods for Efficient Bayesian Solution of Inverse Problems,” J. Comput. Phys.,
224(2), pp. 560–586.

[CrossRef]
Marzouk,
Y. M.
, and
Najm,
H. N.
, 2009, “
Dimensionality Reduction and Polynomial Chaos Acceleration of Bayesian Inference in Inverse Problems,” J. Comput. Phys.,
228(6), pp. 1862–1902.

[CrossRef]
Bilionis,
I.
, and
Zabaras,
N.
, 2014, “
Solution of Inverse Problems With Limited Forward Solver Evaluations: A Bayesian Perspective,” Inverse Probl.,
30(1), p. 015004.

[CrossRef]
Ghosh,
J. K.
,
Delampady,
M.
, and
Samanta,
T.
, 2007, An Introduction to Bayesian Analysis: Theory and Methods,
Springer Science & Business Media,
Heidelberg, Germany.

Griewank,
A.
, and
Walther,
A.
, 2008, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd ed.,
Society for Industrial and Applied Mathematics,
Philadelphia, PA.

Plessix,
R.-E.
, 2006, “
A Review of the Adjoint-State Method for Computing the Gradient of a Functional With Geophysical Applications,” Geophys. J. Int.,
167(2), pp. 495–503.

[CrossRef]
Fox,
C. W.
, and
Roberts,
S. J.
, 2011, “
A Tutorial on Variational Bayesian Inference,” Artif. Intell. Rev.,
38(2), pp. 85–95.

[CrossRef]
Chen,
P.
,
Zabaras,
N.
, and
Bilionis,
I.
, 2015, “
Uncertainty Propagation Using Infinite Mixture of Gaussian Processes and Variational Bayesian Inference,” J. Comput. Phys.,
284, pp. 291–333.

[CrossRef]
Ormerod,
J. T.
, and
Wand,
M. P.
, 2010, “
Explaining Variational Approximations,” Am. Stat.,
64(2), pp. 140–153.

[CrossRef]
Li,
L.
,
Silva,
J.
,
Zhou,
M.
, and
Carin,
L.
, 2012, “
Online Bayesian Dictionary Learning for Large Datasets,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, Mar. 25–30, pp. 2157–2160.

Blei,
D. M.
,
Ng,
A. Y.
, and
Jordan,
M. I.
, 2003, “
Latent Dirichlet Allocation,” J. Mach. Learn. Res.,
3, pp. 993–1022.

Hoffman,
M. D.
,
Blei,
D. M.
, and
Bach,
F. R.
, 2010, “
Online Learning for Latent Dirichlet Allocation,” Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, Dec. 6–9, pp. 856–864.

Jin,
B.
, 2012, “
A Variational Bayesian Method to Inverse Problems With Impulsive Noise,” J. Comput. Phys.,
231(2), pp. 423–435.

[CrossRef]
Franck,
I. M.
, and
Koutsourelakis,
P. S.
, 2016, “
Sparse Variational Bayesian Approximations for Nonlinear Inverse Problems: Applications in Nonlinear Elastography,” Comput. Methods Appl. Mech. Eng.,
299, pp. 215–244.

[CrossRef]
Pinski,
F.
,
Simpson,
G.
,
Stuart,
A.
, and
Weber,
H.
, 2015, “
Kullback–Leibler Approximation for Probability Measures on Infinite Dimensional Spaces,” SIAM J. Math. Anal.,
47(6), pp. 4091–4122.

[CrossRef]
Pinski,
F. J.
,
Simpson,
G.
,
Stuart,
A. M.
, and
Weber,
H.
, 2015, “
Algorithms for Kullback–Leibler Approximation of Probability Measures in Infinite Dimensions,” SIAM J. Sci. Comput.,
37(6), pp. A2733–A2757.

[CrossRef]
Gershman,
S.
,
Hoffman,
M. D.
, and
Blei,
D. M.
, 2012, “
Nonparametric Variational Inference,” Proceedings of the 29th International Conference on Machine Learning, Edinburgh, Scotland, UK.

McLachlan,
G.
, and
Peel,
D.
, 2004, Finite Mixture Models,
Wiley,
New York.

Jordan,
M. I.
,
Ghahramani,
Z.
,
Zaakkola,
T. S.
, and
Saul,
L. K.
, 1999, “
An Introduction to Variational Methods for Graphical Models,” Mach. Learn.,
37(2), pp. 183–233.

[CrossRef]
Kullback,
S.
, and
Leibler,
R. A.
, 1951, “
On Information and Sufficiency,” Ann. Math. Stat.,
22(1), pp. 79–86.

[CrossRef]
Robbins,
H.
, and
Monro,
S.
, 1951, “
A Stochastic Approximation Method,” Ann. Math. Stat.,
22(3), pp. 400–407.

[CrossRef]
Bilionis,
I.
, and
Zabaras,
N.
, 2013, “
A Stochastic Optimization Approach to Coarse-Graining Using a Relative-Entropy Framework,” J. Chem. Phys.,
138(4), p. 044313.

[CrossRef] [PubMed]
Bilionis,
I.
, and
Koutsourelakis,
P. S.
, 2012, “
Free Energy Computations by Minimization of Kullback–Leibler Divergence: An Efficient Adaptive Biasing Potential Method for Sparse Representations,” J. Comput. Phys.,
231(9), pp. 3849–3870.

[CrossRef]
Huber,
M. F.
,
Bailey,
T.
,
Durrant-Whyte,
H.
, and
Hanebeck,
U. D.
, 2008, “
On Entropy Approximation for Gaussian Mixture Random Vectors,” IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Seoul, South Korea, Aug. 20–22, pp. 181–188.

Bacharoglou,
A. G.
, 2010, “
Approximation of Probability Distributions by Convex Mixtures of Gaussian Measures,” Proc. Am. Math. Soc.,
138(7), pp. 2619–2628.

[CrossRef]
Byrd,
R. H.
,
Lu,
P.
,
Nocedal,
J.
, and
Zhu,
C.
, 1995, “
A Limited Memory Algorithm for Bound Constrained Optimization,” SIAM J. Sci. Comput.,
16(5), pp. 1190–1208.

[CrossRef]
Atchadé,
Y. F.
, 2006, “
An Adaptive Version for the Metropolis Adjusted Langevin Algorithm With a Truncated Drift,” Methodol. Comput. Appl. Probab.,
8(2), pp. 235–254.

[CrossRef]
Katsounaros,
I.
,
Dortsiou,
M.
,
Polatides,
C.
,
Preston,
S.
,
Kypraios,
T.
, and
Kyriacou,
G.
, 2012, “
Reaction Pathways in the Electrochemical Reduction of Nitrate on Tin,” Electrochim. Acta,
71, pp. 270–276.

[CrossRef]
Guyer,
J. E.
,
Wheeler,
D.
, and
Warren,
J. A.
, 2009, “
FiPy: Partial Differential Equations With Python,” Comput. Sci. Eng.,
11(3), pp. 6–15.

[CrossRef]