Oreskes,
N.
,
Shrader-Frechett,
K.
, and
Belitz,
K.
, 1994, “
Verification, Validation and Confirmation of Numerical Models in Earth Sciences,” Science,
263(5147), pp. 641–647.

[CrossRef] [PubMed]
Mehta,
U.
, 1991, “
Some Aspects of Uncertainty in Computational Fluid Dynamics Results,” ASME J. Fluids Eng.,
113(4), pp. 538–543.

[CrossRef]
Mehta,
U.
, 1996, “
Guide to Credible Computer Simulations of Fluid Flows,” J. Propul. Power,
12(5), pp. 940–948.

[CrossRef]
Oberkampf,
W.
,
DeLand,
S.
,
Rutherford,
B.
,
Diegert,
K.
, and
Alvin,
K.
, 2002, “
Error and Uncertainty in Modeling and Simulation,” Reliab. Eng. Syst. Saf.,
75(3), pp. 335–357.

[CrossRef]
Walters,
R.
, and
Huyse,
L.
, 2002, “
Uncertainty Analysis for Fluid Mechanics With Applications,” National Aeronautics and Space Administration, Hanover, MD, Report No. NASA/CR-2002-211449.

Rubinstein,
R.
, 1981, Simulation and the Monte Carlo Method,
Wiley,
New York.

Chopin,
N.
, 2009, “
Central Limit Theorem for Sequential Monte Carlo Methods and Its Application to Bayesian Inference,” Ann. Stat.,
32(6), pp. 2385–2411.

[CrossRef]
Adler,
R.
, and
Taylor,
J.
, 2007, Random Fields and Geometry,
Springer,
New York.

Venturi,
D.
, 2011, “
A Fully Symmetric Nonlinear Biorthogonal Decomposition Theory for Random Fields,” Phys. D,
240(4–5), pp. 415–425.

[CrossRef]
Ghanem,
R.
, and
Spanos,
P.
, 2003, Stochastic Finite Elements: A Spectral Approach,
Dover Publications,
Mineola, NY.

Xiu,
D.
, and
Karniadakis,
G.
, 2003, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos,” J. Comput. Phys.,
187(1), pp. 137–167.

[CrossRef]
Xiu,
D.
, and
Karniadakis,
E.
, 2002, “
The Weiner–Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM J. Sci. Comput.,
24(2), pp. 619–644.

[CrossRef]
Koekoek,
R.
, and
Swarttourw,
R.
, 1998, “
The Askey Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue,” Delft University of Technology, Delft, Netherlands, Technical Report No. 98-17.

Mathelin,
L.
,
Hussaini,
M.
, and
Zang,
T.
, 2005, “
Stochastic Approaches to Uncertainty Quantification in CFD Simulations,” Numer. Algorithms,
38(1), pp. 209–236.

[CrossRef]
Najm,
H.
, 2009, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics,” Annu. Rev. Fluid Mech.,
41(1), pp. 35–52.

[CrossRef]
LeVeque,
R.
, 1992, Numerical Methods for Conservation Laws,
Birkhause Verlag,
Basel, Switzerland.

Sargsyan,
K.
,
Safta,
C.
,
Debusschere,
B.
, and
Najm,
H.
, 2012, “
Uncertainty Quantification Given Discontinuous Model Response and a Limited Number of Model Runs,” SIAM J. Sci. Comput.,
34(1), pp. 44–64.

[CrossRef]
Najm,
H.
, 2011, “
Uncertainty Quantification in Fluid Flow,” Turbulent Combustion Modeling (Fluid Mechanics and its Applications), Vol.
95,
Springer, Dordrecht,
The Netherlands, pp. 381–407.

Hewitt,
E.
, and
Hewitt,
R.
, 1979, “
The Gibbs–Wilbraham Phenomenon: An Episode in Fourier Analysis,” Arch. Hist. Exact Sci.,
21(2), pp. 129–160.

[CrossRef]
Gottlieb,
D.
, and
Shu,
C.
, 1997, “
On the Gibbs Phenomenon and Its Resolution,” SIAM Rev.,
39(4), pp. 644–668.

[CrossRef]
Gottlieb,
S.
,
Jung,
J.
, and
Kim,
S.
, 2011, “
A Review of David Gottliebs Work on the Resolution of the Gibbs Phenomenon,” Commun. Comput. Phys.,
9(3), pp. 497–519.

[CrossRef]
Gottlieb,
D.
,
Shu,
C.
,
Solomonoff,
A.
, and
Vandeven,
H.
, 1992, “
On the Gibbs Phenomenon—I: Recovering Exponential Accuracy From the Fourier Partial Sum of a Nonperiodic Analytic Function,” J. Comput. Appl. Math.,
43(1–2), pp. 81–98.

[CrossRef]
Gottlieb,
D.
, and
Shu,
C.
, 1995, “
On the Gibbs Phenomenon—IV: Recovering Exponential Accuracy in a Subinterval From a Gegenbauer Partial Sum of a Piecewiae Analytic Function,” Math. Comput.,
64, pp. 1081–1095.

Sapsis,
T.
, and
Lermusiaux,
P.
, 2009, “
Dynamically Orthogonal Field Equations for Continuous Stochastic Dynamical Systems,” Phys. D,
238(23–24), pp. 2347–2360.

[CrossRef]
Tagade,
P.
, and
Choi,
H.-L.
, 2012, “
An Efficient Bayesian Calibration Approach Using Dynamically Biorthogonal Field Equations,” ASME Paper No. DETC2012-70584.

Cheng,
M.
,
Hou,
T.
, and
Zhang,
Z.
, 2013, “
A Dynamically Bi-Orthogonal Method for Time-Dependent Stochastic Partial Differential Equations—I: Derivation and Algorithms,” J. Comput. Phys.,
242, pp. 843–868.

[CrossRef]
Choi,
M.
,
Sapsis,
T.
, and
Karniadakis,
G.
, 2013, “
A Convergence Study for SPDEs Using Combined Polynomial Chaos and Dynamically-Orthogonal Schemes,” J. Comput. Phys.,
245, pp. 281–301.

[CrossRef]
Wan,
X.
, and
Karniadakis,
G.
, 2005, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations,” J. Comput. Phys.,
209(2), pp. 617–642.

[CrossRef]
Lin,
G.
,
Su,
C.
, and
Karniadakis,
G.
, 2006, “
Predicting Shock Dynamics in the Presence of Uncertainties,” J. Comput. Phys.,
217(1), pp. 260–276.

[CrossRef]
Poette,
G.
,
Despres,
B.
, and
Lucor,
D.
, 2009, “
Uncertainty Quantification for Systems of Conservation Laws,” J. Comput. Phys.,
228(7), pp. 2443–2467.

[CrossRef]
Tryoen,
J.
,
Le Matre,
O.
,
Ndjinga,
M.
, and
Ern,
A.
, 2010, “
Roe Solver With Entropy Corrector for Uncertain Hyperbolic Systems,” J. Comput. Phys.,
235(2), pp. 491–506.

Chantrasmi,
T.
,
Doostan,
A.
, and
Iaccarino,
G.
, 2009, “
Pade–Legendre Approximants for Uncertainty Analysis With Discontinuous Response Surfaces,” J. Comput. Phys.,
228(19), pp. 7159–7180.

[CrossRef]
Cameron,
R.
, and
Martin,
W.
, 1947, “
The Orthogonal Development of Non-Linear Functionals in Series of Fourier–Hermite Functionals,” Ann. Math.,
48(2), pp. 385–392.

[CrossRef]
Chakrabarti,
A.
, and
Martha,
S.
, 2009, “
Approximate Solutions of Fredholm Integral Equations of the Second Kind,” Appl. Math. Comput.,
211(2), pp. 459–466.

Huang,
S.
,
Quek,
S.
, and
Phoon,
K.
, 2001, “
Convergence Study of the Truncated Karhunen–Loeve Expansion for Simulation of Stochastic Processes,” Int. J. Numer. Methods Eng.,
52(9), pp. 1029–1043.

[CrossRef]
Kurganov,
A.
, and
Tadmor,
E.
, 2000, “
New High Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations,” J. Comput. Phys.,
160(1), pp. 241–282.

[CrossRef]
Gelb,
A.
, and
Tadmor,
E.
, 1999, “
Detection of Edges in Spectral Data,” Appl. Comput. Harmonic Anal.,
7(1), pp. 101–135.

[CrossRef]
Gelb,
A.
, and
Tadmor,
E.
, 2001, “
Detection of Edges in Spectral Data—II: Nonlinear Enhancement,” SIAM J. Numer. Anal.,
38(4), pp. 1389–1408.

[CrossRef]
Yang,
H.
, and
Przekwas,
A.
, 1992, “
A Comparative Study of Advanced Shock-Capturing Schemes Applied to Burgers Equation,” J. Comput. Phys.,
102(1), pp. 139–159.

[CrossRef]
Pettersson,
P.
,
Iaccarino,
G.
, and
Nordstrom,
J.
, 2009, “
Numerical Analysis of the Burgers Equation in the Presence of Uncertainty,” J. Comput. Phys.,
228(22), pp. 8394–8412.

[CrossRef]
Mathelin,
L.
,
Hussaini,
M.
,
Zang,
T.
, and
Bataille,
F.
, 2004, “
Uncertainty Propagation for a Turbulent, Compressible Nozzle Flow Using Stochastic Methods,” AIAA J.,
42(8), pp. 1669–1676.

[CrossRef]