Sedov,
L.
, 1959, Similarity and Dimensional Methods in Mechanics,
Academic Press,
New York.

Barenblatt,
G.
, 1996, Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics,
Cambridge University Press,
Cambridge, UK.

[CrossRef]
Axford,
R.
, 2000, “
Solutions of the Noh Problem for Various Equations of State Using Lie Groups,” Lasers Part. Beams,
18(1), pp. 93–100.

[CrossRef]
Zel'dovich,
Y.
, and
Raizer,
Y.
, 2002, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena,
Dover Publications,
Mineola, NY.

Ramsey,
S.
,
Kamm,
J.
, and
Bolstad,
J.
, 2012, “
The Guderley Problem Revisited,” Int. J. Comp. Fluid Dyn.,
26(2), pp. 79–99.

[CrossRef]
Coggeshall,
S.
, 1991, “
Analytic Solutions of Hydrodynamics Equations,” Phys. Fluids A,
3(5), p. 757.

[CrossRef]
Oberkampf,
W.
,
Trucano,
T.
, and
Hirsh,
C.
, 2004, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics,” ASME Appl. Mech. Rev.,
57(5), pp. 345–384.

[CrossRef]
Roy,
C.
, 2005, “
Review of Code and Solution Verification Procedures for Computational Simulation,” J. Comp. Phys.,
205(1), pp. 131–156.

[CrossRef]
Guderley,
G.
, 1942, “
Starke Kugelige und Zylindrische Verdichtungsstöβe in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse,” Luftfahrtforschung,
19, p. 302.

Stanyukovich,
K.
, 1970, Unsteady Motion of Continuous Media,
Pergammon Press,
New York.

Lazarus,
R.
, and
Richtmyer,
R.
, 1977, “
Similarity Solutions for Converging Shocks,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-6823-MS.

Lazarus,
R.
, 1981, “
Self-Similar Solutions for Converging Shocks and Collapsing Cavities,” SIAM J. Numer. Anal.,
18(2), pp. 316–371.

[CrossRef]
Sachdev,
P.
, 2004, Shock Waves and Explosions,
Chapman & Hall/CRC,
Boca Raton, FL.

[CrossRef]
Chisnell,
R.
, 1998, “
An Analytic Description of Converging Shock Waves,” J. Fluid Mech.,
354(10), pp. 357–375.

[CrossRef]
Meyer-ter-Vehn,
J.
, and
Schalk,
C.
, 1982, “
Selfsimilar Spherical Compression Waves in Gas Dynamics,” Z. Naturforsch., A,
37(8), pp. 954–970.

[CrossRef]
Boyd,
Z.
,
Ramsey,
S. D.
, and
Baty,
R. S.
, 2016, “
On the Existence of Self-Similar Converging Shocks for an Arbitrary Equation of State,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-16-27312.

Fujimoto, Y.
, and
Mishkin, E. A.
, 1978, “
Analysis of Spherically Imploding Shocks,” Phys. Fluids,
21(11), p. 1933.

[CrossRef]
Lazarus,
R.
, 1980, “
Comments on ‘Analysis of Spherical Imploding Shocks’,” Phys. Fluids,
23(4), p. 844.

[CrossRef]
Yousaf,
M.
, 1986, “
Imploding Spherical and Cylindrical Shocks,” Phys. Fluids,
29(3), p. 680.

[CrossRef]
Landau,
L.
, and
Lifshitz,
E.
, 1987, Fluid Mechanics, 2nd ed.,
Pergamon Press,
Oxford, UK.

Taylor,
G.
, 1950, “
The Formation of a Blast Wave by a Very Intense Explosion—Part I: Theoretical Discussion,” Proc. R. Soc. London, Ser. A,
201(1065), pp. 159–174.

[CrossRef]
Korobeĭnikov,
V.
, 1991, Problems of Point Blast Theory,
Springer,
New York.

Hutchens,
G.
, 1990, “
Finite-Strength Shock Propagation for Alternative Equations of State,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.

Hornung,
H.
,
Pullin,
D.
, and
Ponchaut,
N.
, 2008, “
On the Question of Universality of Imploding Shock Waves,” Acta Mech.,
201(1–4), pp. 31–35.

[CrossRef]
Burton,
D.
, 1990, “
Conservation of Energy, Momentum, and Angular Momentum in Lagrangian Staggered-Grid Hydrodynamics,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-JC-195926.

Caramana,
E.
,
Burton,
D.
,
Shashkov,
M.
, and
Whalen,
P.
, 1998, “
The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy,” J. Comp. Phys.,
146(1), pp. 227–262.

[CrossRef]
Caramana,
E.
,
Shashkov,
M.
, and
Whalen,
P.
, 1998, “
Formulations of Artificial Viscosity for Multi-Dimensional Shock Wave Computations,” J. Comp. Phys.,
144(1), pp. 70–97.

[CrossRef]
Morgan,
N.
, 2013, “
A Dissipation Model for Staggered Grid Lagrangian Hydrodynamics,” Comput. Fluids,
83, pp. 48–57.

[CrossRef]
Morgan,
N.
,
Lipnikov,
K.
,
Burton,
D.
, and
Kenamond,
M.
, 2014, “
A Lagrangian Staggered Grid Godunov-Like Approach for Hydrodynamics,” J. Comp. Phys.,
259, pp. 568–597.

[CrossRef]
Banks,
J.
,
Aslam,
T.
, and
Rider,
W.
, 2008, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes,” J. Comp. Phys.,
227(14), pp. 6985–7002.

[CrossRef]
Majda,
A.
, and
Ralston,
J.
, 1979, “
Discrete Shock Profiles for Systems of Conservation Laws,” Comm. Pure Appl. Math.,
32(4), pp. 445–482.

[CrossRef]
Runnels,
S.
, and
Margolin,
L.
, 2013, “
An Integrated Study of Numerical Shock Shape, Artificial Viscosity, and Plasticity,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-13-24226.

LeVeque,
R.
, 2002, Finite Volume Methods for Hyperbolic Problems,
Cambridge University Press,
Cambridge, UK.

[CrossRef]
Arora,
M.
, and
Roe,
P.
, 1997, “
On Postshock Oscillations Due to Shock Capturing Schemes in Unsteady Flows,” J. Comp. Phys.,
130(1), pp. 25–40.

[CrossRef]
Noh,
W.
, 1987, “
Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux,” J. Comp. Phys.,
72(1), pp. 78–120.

[CrossRef]
Rider,
W.
, 2000, “
Revisiting Wall Heating,” J. Comp. Phys.,
162(2), pp. 395–410.

[CrossRef]
Kamm,
J.
,
Rider,
W.
, and
Brock,
J.
, 2003, “
Combined Space and Time Convergence Analysis of a Compressible Flow Algorithm,” AIAA Paper No. 2003-4241.

Doebling,
S.
, and
Ramsey,
S.
, 2013, “
Impact of Artificial Viscosity Models on Verification Assessment of a Lagrangian Hydrodynamics Code Using the Sedov Problem,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-13-23559.

Pederson,
C.
,
Brown,
B.
, and
Morgan,
N.
, 2016, “
The Sedov Blast Wave as a Radial Piston Verification Test,” ASME J. Verif. Valid. Uncertainty Quantif.,
1(3), p. 031001.

[CrossRef]
Caramana,
E.
, and
Whalen,
P.
, 1998, “
Numerical Preservation of Symmetry Properties of Continuum Problems,” J. Comp. Phys.,
141(2), pp. 174–198.

[CrossRef]
Caramana,
E. J.
, and
Shashkov,
M. J.
, 1998, “
Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures,” J. Comp. Phys.,
142(2), pp. 521–561.

[CrossRef]