Donea,
J.
, and
Huerta,
A.
, 2003, Finite Element Methods for Flow Problems,
Wiley, Chichester, UK.

[CrossRef]
Chan,
R. K. C.
, and
Street,
R. L.
, 1970, “
A Computer Study of Finite-Amplitude Water Waves,” J. Comput. Phys.,
6(1), pp. 68–94.

[CrossRef]
Harlow,
F. H.
, and
Welch,
J. E.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface,” Phys. Fluids,
8(12), pp. 2182–2189.

[CrossRef]
Hirt,
C. W.
, and
Cook,
J. L.
, 1972, “
Calculating Three-Dimensional Flows Around Structures and Over Rough Terrain,” J. Comput. Phys.,
10(2), pp. 324–340.

[CrossRef]
Ramshaw,
J. D.
, and
Trapp,
J. A.
, 1976, “
A Numerical Technique for Low-Speed Homogeneous Two-Phase Flow With Sharp Interfaces,” J. Comput. Phys.,
21(4), pp. 438–453.

[CrossRef]
Nakayama,
T.
, and
Mori,
M.
, 1996, “
An Eulerian Finite Element Method for Time‐Dependent Free Surface Problems in Hydrodynamics,” Int. J. Numer. Methods Fluids,
22(3), pp. 175–194.

[CrossRef]
Hirt,
C. W.
, and
Nichols,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys.,
39(1), pp. 201–225.

[CrossRef]
Kim,
M. S.
, and
Lee,
W. I.
, 2003, “
A New VOF‐Based Numerical Scheme for the Simulation of Fluid Flow With Free Surface—Part I: New Free Surface‐Tracking Algorithm and Its Verification,” Int. J. Numer. Methods Fluids,
42(7), pp. 765–790.

[CrossRef]
Rider,
W. J.
, and
Kothe,
D. B.
, 1998, “
Reconstructing Volume Tracking,” J. Comput. Phys.,
141(2), pp. 112–152.

[CrossRef]
Rudman,
M.
, 1997, “
Volume-Tracking Methods for Interfacial Flow Calculations,” Int. J. Numer. Methods Fluids,
24(7), pp. 671–691.

[CrossRef]
Soo Kim,
M.
,
Sun Park,
J.
, and
Lee,
W. I.
, 2003, “
A New VOF‐Based Numerical Scheme for the Simulation of Fluid Flow With Free Surface—Part II: Application to the Cavity Filling and Sloshing Problems,” Int. J. Numer. Methods Fluids,
42(7), pp. 791–812.

[CrossRef]
Viecelli,
J. A.
, 1969, “
A Method for Including Arbitrary External Boundaries in the MAC Incompressible Fluid Computing Technique,” J. Comput. Phys.,
4(4), pp. 543–551.

[CrossRef]
Hirt,
C. W.
,
Amsden,
A. A.
, and
Cook,
J. L.
, 1997, “
An Arbitrary Lagrangian–Eulerian Computing Method for All Flow Speeds,” J. Comput. Phys.,
135(2), pp. 203–216.

[CrossRef]
Hughes,
T. J.
,
Liu,
W. K.
, and
Zimmermann,
T. K.
, 1981, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows,” Comput. Methods Appl. Mech. Eng.,
29(3), pp. 329–349.

[CrossRef]
Navti,
S. E.
,
Ravindran,
K.
,
Taylor,
C.
, and
Lewis,
R. W.
, 1997, “
Finite Element Modelling of Surface Tension Effects Using a Lagrangian-Eulerian Kinematic Description,” Comput. Methods Appl. Mech. Eng.,
147(1–2), pp. 41–60.

[CrossRef]
Oñate,
E.
, and
García,
J.
, 2001, “A Finite Element Method for Fluid--Structure Interaction With Surface Waves Using a Finite Calculus Formulation,” Comput. Methods Appl. Mech. Eng., **191**(6–7), pp. 635–660.

Soulaimani,
A.
, and
Saad,
Y.
, 1998, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Solving Three-Dimensional Free Surface Flows,” Comput. Methods Appl. Mech. Eng.,
162(1–4), pp. 79–106.

[CrossRef]
Belytschko,
T.
,
Liu,
W. K.
,
Moran,
B.
, and
Elkhodary,
K.
, 2013, Nonlinear Finite Elements for Continua and Structures,
Wiley, New York.

Adami,
S.
,
Hu,
X. Y.
, and
Adams,
N. A.
, 2012, “
A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics,” J. Comput. Phys.,
231(21), pp. 7057–7075.

[CrossRef]
Colagrossi,
A.
, and
Landrini,
M.
, 2003, “
Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics,” J. Comput. Phys.,
191(2), pp. 448–475.

[CrossRef]
González,
D.
,
Cueto,
E.
,
Chinesta,
F.
, and
Doblaré,
M.
, 2007, “
A Natural Element Updated Lagrangian Strategy for Free-Surface Fluid Dynamics,” J. Comput. Phys.,
223(1), pp. 127–150.

[CrossRef]
Kondo,
M.
, and
Koshizuka,
S.
, 2011, “
Improvement of Stability in Moving Particle Semi‐Implicit Method,” Int. J. Numer. Methods Fluids,
65(6), pp. 638–654.

[CrossRef]
Monaghan,
J. J.
, and
Gingold,
R. A.
, 1983, “
Shock Simulation by the Particle Method SPH,” J. Comput. Phys.,
52(2), pp. 374–389.

[CrossRef]
Monaghan,
J. J.
, and
Kocharyan,
A.
, 1995, “
SPH Simulation of Multi-Phase Flow,” Comput. Phys. Commun.,
87(1–2), pp. 225–235.

[CrossRef]
Monaghan,
J. J.
, and
Kos,
A.
, 1999, “
Solitary Waves on a Cretan Beach,” J. Waterw., Port, Coastal, Ocean Eng.,
125(3), pp. 145–155.

[CrossRef]
Monaghan,
J. J.
, 1988, “
An Introduction to SPH,” Comput. Phys. Commun.,
48(1), pp. 89–96.

[CrossRef]
Monaghan,
J. J.
, 1992, “
Smoothed Particle Hydrodynamics,” Annu. Rev. Astron. Astrophys.,
30(1), pp. 543–574.

[CrossRef]
Monaghan,
J. J.
, 1994, “
Simulating Free Surface Flows With SPH,” J. Comput. Phys.,
110(2), pp. 399–406.

[CrossRef]
Monaghan,
J. J.
,
Cas,
R. A. F.
,
Kos,
A. M.
, and
Hallworth,
M.
, 1999, “
Gravity Currents Descending a Ramp in a Stratified Tank,” J. Fluid Mech.,
379, pp. 39–69.

[CrossRef]
Shao,
S.
, and
Lo,
E. Y.
, 2003, “
Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows With a Free Surface,” Adv. Water Resour.,
26(7), pp. 787–800.

[CrossRef]
Nayroles,
B.
,
Touzot,
G.
, and
Villon,
P.
, 1992, “
Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,” Comput. Mech.,
10(5), pp. 307–318.

[CrossRef]
Pape,
D.
,
Thornton,
B.
, and
Yugulis,
K.
, 2016, “
Slosh Characteristics of Aggregated Intermediate Bulk Containers on Single-Unit Trucks,” Federal Motor Carrier Safety Administration,
U.S. Department of Transportation, Washington, DC.

Cheli,
F.
,
D'Alessandro,
V.
,
Premoli,
A.
, and
Sabbioni,
E.
, 2013, “
Simulation of Sloshing in Tank Trucks,” Int. J. Heavy Veh. Syst.,
20(1), pp. 1–18.

[CrossRef]
Elliott,
A. S.
,
Slattengren,
J.
, and
Buijk,
A.
, 2006, “Fully Coupled Fluid/Mechanical Response Prediction for Truck-Mounted Tank Sloshing Using Cosimulation of MSC.ADAMS^{®} and MSC.Dytran^{®},” SAE Paper No. 2006-01-0932.

Barton,
M. S.
,
Corson,
D.
,
Quigley,
J.
,
Emami,
B.
, and
Kush,
T.
, 2014, “Tanker Truck Sloshing Simulation Using Bi-Directionally Coupled CFD and Multi-Body Dynamics Solvers,” SAE Paper No. 2014-01-2442.

Wei,
C.
,
Wang,
L.
, and
Shabana,
A. A.
, 2015, “
A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications,” ASME J. Comput. Nonlinear Dyn.,
10(5), p. 051014.

[CrossRef]
Shi,
H.
,
Wang,
L.
,
Nicolsen,
B.
, and
Shabana,
A. A.
, 2017, “
Integration of Geometry and Analysis for the Study of Liquid Sloshing in Railroad Vehicle Dynamics,” Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.,
231(4), pp. 608–629.

Nicolsen,
B.
,
Wang,
L.
, and
Shabana,
A.
, 2017, “
Nonlinear Finite Element Analysis of Liquid Sloshing in Complex Vehicle Motion Scenarios,” J. Sound Vib.,
405, pp. 208–233.

[CrossRef]
Abdolmaleki,
K.
,
Thiagarajan,
K. P.
, and
Morris-Thomas,
M. T.
, 2004, “
Simulation of the Dam Break Problem and Impact Flows Using a Navier–Stokes Solver,” Simulations,
13, p. 17.

http://people.eng.unimelb.edu.au/imarusic/proceedings/15/AFMC00031.pdf
Brufau,
P.
, and
Garcia-Navarro,
P.
, 2000, “
Two-Dimensional Dam Break Flow Simulation,” Int. J. Numer. Methods Fluids,
33(1), pp. 35–57.

[CrossRef]
Huerta,
A.
, and
Liu,
W. K.
, 1988, “
Viscous Flow With Large Free Surface Motion,” Comput. Methods Appl. Mech. Eng.,
69(3), pp. 277–324.

[CrossRef]
Korobkin,
A.
, and
Yilmaz,
O.
, 2009, “
The Initial Stage of Dam-Break Flow,” J. Eng. Math.,
63(2–4), pp. 293–308.

[CrossRef]
Rumold,
W.
, 2001, “
Modeling and Simulation of Vehicles Carrying Liquid Cargo,” Multibody Syst. Dyn.,
5(4), pp. 351–374.

[CrossRef]
Shin,
S.
, and
Lee,
W. I.
, 2000, “
Finite Element Analysis of Incompressible Viscous Flow With Moving Free Surface by Selective Volume of Fluid Method,” Int. J. Heat Fluid Flow,
21(2), pp. 197–206.

[CrossRef]
Stansby,
P. K.
,
Chegini,
A.
, and
Barnes,
T. C. D.
, 1998, “
The Initial Stages of Dam-Break Flow,” J. Fluid Mech.,
374, pp. 407–424.

[CrossRef]
Wang,
S. P.
, and
Wang,
K. K.
, 1994, “
A Net Inflow Method for Incompressible Viscous Flow With Moving Free Surface,” Int. J. Numer. Methods Fluids,
18(7), pp. 669–694.

[CrossRef]
Martin,
J. C.
, and
Moyce,
W. J.
, 1952, “
Part IV—An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane,” Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.,
244(882), pp. 312–324.

[CrossRef]
Shabana,
A. A.
, 2017, Computational Continuum Mechanics, 3rd ed.,
Wiley, Chichester, UK.

Langtangen,
H. P.
,
Mardal,
K. A.
, and
Winther,
R.
, 2002, “
Numerical Methods for Incompressible Viscous Flow,” Adv. Water Resour.,
25(8), pp. 1125–1146.

[CrossRef]
González,
J. A.
,
Lee,
Y. S.
, and
Park,
K. C.
, 2017, “
Stabilized Mixed Displacement–Pressure Finite Element Formulation for Linear Hydrodynamic Problems With Free Surfaces,” Comput. Methods Appl. Mech. Eng.,
319, pp. 314–337.

[CrossRef]
Kim,
N. H.
, 2014, Introduction to Nonlinear Finite Element Analysis,
Springer Science & Business Media, New York.

Jun,
L.
, 1988, “
Numerical Simulation of Flow With Moving Interface,” PhysicoChemical Hydrodyn.,
10(5), p. 625.

Okamoto,
T.
, and
Kawahara,
M.
, 1990, “
Two‐Dimensional Sloshing Analysis by Lagrangian Finite Element Method,” Int. J. Numer. Methods Fluids,
11(5), pp. 453–477.

[CrossRef]
Ramaswamy,
B.
,
Kawahara,
M.
, and
Nakayama,
T.
, 1986, “
Lagrangian Finite Element Method for the Analysis of Two‐Dimensional Sloshing Problems,” Int. J. Numer. Methods Fluids,
6(9), pp. 659–670.

[CrossRef]
Sung,
J.
,
Choi,
H. G.
, and
Yoo,
J. Y.
, 1999, “
Finite Element Simulation of Thin Liquid Film Flow and Heat Transfer Including a Hydraulic Jump,” Int. J. Numer. Methods Eng.,
46(1), pp. 83–101.

[CrossRef]
Shabana,
A. A.
,
Zaazaa,
K. E.
, and
Sugiyama,
H.
, 2008, Railroad Vehicle Dynamics: A Computational Approach,
CRC, Boca Raton, FL.

Olshevskiy,
A.
,
Dmitrochenko,
O.
, and
Kim,
C.
, 2013, “
Three- and Four-Noded Planar Elements Using Absolute Nodal Coordinate Formulation,” Multibody Syst. Dyn.,
29(3), pp. 255–269.

[CrossRef]
Lobovský,
L.
,
Botia-Vera,
E.
,
Castellana,
F.
,
Mas-Soler,
J.
, and
Souto-Iglesias,
A.
, 2014, “
Experimental Investigation of Dynamic Pressure Loads During Dam Break,” J. Fluids Struct.,
48, pp. 407–434.

[CrossRef]
Osher,
S.
, and
Sethian,
J. A.
, 1988, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Phys.,
79(1), pp. 12–49.

[CrossRef]
López-Villa,
A.
,
Zamudio,
L. S.
, and
Medina,
A.
, 2014, “
The Boundary Element Method in Fluid Mechanics: Application to Bubble Growth,” Experimental and Computational Fluid Mechanics,
Springer International Publishing, Cham, Switzerland, pp. 17–48.

[CrossRef]
McDonald,
P. W.
, 1971, “The Computation of Transonic Flow Through Two-Dimensional Gas Turbine Cascades,” ASME Paper No. 71-GT-89.

MacCormack,
R.
, and
Paullay,
A.
, 1972, “Computational Efficiency Achieved by Time Splitting of Finite Difference Operators,” AIAA Paper No. 72-154.

Fluent, 2001, FLUENT 6 User's Guide,
Fluent Inc., Canonsburg, PA.

Olshevskiy,
A.
,
Dmitrochenko,
O.
, and
Kim,
C. W.
, 2013, “
Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation,” ASME J. Comput. Nonlinear Dyn.,
9(2), p. 021001.

[CrossRef]
Ketabdari,
M. J.
, and
Roozbahani,
A. N.
, 2013, “
Numerical Simulation of Plunging Wave Breaking by the Weakly Compressible Smoothed Particle Hydrodynamic Method,” J. Appl. Mech. Tech. Phys.,
54(3), pp. 477–486.

[CrossRef]
Pathak,
A.
, and
Raessi,
M.
, 2016, “
A 3D, Fully Eulerian, VOF-Based Solver to Study the Interaction Between Two Fluids and Moving Rigid Bodies Using the Fictitious Domain Method,” J. Comput. Phys.,
311, pp. 87–113.

[CrossRef]
Ahn,
H. T.
,
Shashkov,
M.
, and
Christon,
M. A.
, 2009, “
The Moment‐of‐Fluid Method in Action,” Int. J. Numer. Methods Biomed. Eng.,
25(10), pp. 1009–1018.

Nikseresht,
A. H.
,
Alishahi,
M. M.
, and
Emdad,
H.
, 2005, “
Volume-of-Fluid Interface Tracking With Lagrangian Propagation for Incompressible Free Surface Flows,” Sci. Iran.,
12(2), pp. 131–140.

https://www.researchgate.net/profile/Amir_Nikseresht/publication/265287363_Volume-of-Fluid_Interface_Tracking_with_Lagrangian_Propagation_for_Incompressible_Free_Surface_Flows/links/59edd2c1a6fdccbbefd20376/Volume-of-Fluid-Interface-Tracking-with-Lagrangian-Propagation-for-Incompressible-Free-Surface-Flows.pdf
Ransing,
R. S.
,
Savino,
S.
, and
Lewis,
R. W.
, 2005, “
Numerical Optimization of Tilt Casting Process,” Int. J. Cast Met. Res.,
18(2), pp. 109–118.

[CrossRef]
Cruchaga,
M. A.
,
Celentano,
D. J.
, and
Tezduyar,
T. E.
, 2005, “
Moving-Interface Computations With the Edge-Tracked Interface Locator Technique (ETILT),” Int. J. Numer. Methods Fluids,
47(6–7), pp. 451–469.

[CrossRef]