Research Papers

Verification of a Total Lagrangian ANCF Solution Procedure for Fluid–Structure Interaction Problems

[+] Author and Article Information
Emanuele Grossi

Department of Mechanical and Industrial
University of Illinois at Chicago,
Chicago, IL 60607
e-mail: egross20@uic.edu

Ahmed A. Shabana

Department of Mechanical and
Industrial Engineering,
University of Illinois at Chicago,
Chicago, IL 60607
e-mail: shabana@uic.edu

Manuscript received July 12, 2017; final manuscript received December 18, 2017; published online February 12, 2018. Assoc. Editor: Christopher J. Freitas.

J. Verif. Valid. Uncert 2(4), 041001 (Feb 12, 2018) (13 pages) Paper No: VVUQ-17-1026; doi: 10.1115/1.4038904 History: Received July 12, 2017; Revised December 18, 2017

The objective of this investigation is to verify a new total Lagrangian continuum-based fluid model that can be used to solve two- and three-dimensional fluid–structure interaction problems. Large rotations and deformations experienced by the fluid can be captured effectively using the finite element (FE) absolute nodal coordinate formulation (ANCF). ANCF elements can describe arbitrarily complex fluid shapes without imposing any restriction on the amount of rotation and deformation within the finite element, ensure continuity of the time-rate of position vector gradients at the nodal points, and lead to a constant mass matrix regardless of the magnitude of the fluid displacement. Fluid inertia forces are computed, considering the change in the fluid geometry as the result of the large displacements. In order to verify the ANCF solution, the dam-break benchmark problem is solved in the two- and three-dimensional cases. The motion of the fluid free surface is recorded before and after the impact on a vertical wall placed at the end of the dam dry deck. The results are in good agreement with those obtained by other numerical methods. The results obtained in this investigation show that the number of degrees-of-freedom (DOF) required for ANCF convergence is around one order of magnitude less than what is required by other existing methods. Limitations and advantages of the verified ANCF fluid model are discussed.

Copyright © 2018 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.


Donea, J. , and Huerta, A. , 2003, Finite Element Methods for Flow Problems, Wiley, Chichester, UK. [CrossRef]
Chan, R. K. C. , and Street, R. L. , 1970, “ A Computer Study of Finite-Amplitude Water Waves,” J. Comput. Phys., 6(1), pp. 68–94. [CrossRef]
Harlow, F. H. , and Welch, J. E. , 1965, “ Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface,” Phys. Fluids, 8(12), pp. 2182–2189. [CrossRef]
Hirt, C. W. , and Cook, J. L. , 1972, “ Calculating Three-Dimensional Flows Around Structures and Over Rough Terrain,” J. Comput. Phys., 10(2), pp. 324–340. [CrossRef]
Ramshaw, J. D. , and Trapp, J. A. , 1976, “ A Numerical Technique for Low-Speed Homogeneous Two-Phase Flow With Sharp Interfaces,” J. Comput. Phys., 21(4), pp. 438–453. [CrossRef]
Nakayama, T. , and Mori, M. , 1996, “ An Eulerian Finite Element Method for Time‐Dependent Free Surface Problems in Hydrodynamics,” Int. J. Numer. Methods Fluids, 22(3), pp. 175–194. [CrossRef]
Hirt, C. W. , and Nichols, B. D. , 1981, “ Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys., 39(1), pp. 201–225. [CrossRef]
Kim, M. S. , and Lee, W. I. , 2003, “ A New VOF‐Based Numerical Scheme for the Simulation of Fluid Flow With Free Surface—Part I: New Free Surface‐Tracking Algorithm and Its Verification,” Int. J. Numer. Methods Fluids, 42(7), pp. 765–790. [CrossRef]
Rider, W. J. , and Kothe, D. B. , 1998, “ Reconstructing Volume Tracking,” J. Comput. Phys., 141(2), pp. 112–152. [CrossRef]
Rudman, M. , 1997, “ Volume-Tracking Methods for Interfacial Flow Calculations,” Int. J. Numer. Methods Fluids, 24(7), pp. 671–691. [CrossRef]
Soo Kim, M. , Sun Park, J. , and Lee, W. I. , 2003, “ A New VOF‐Based Numerical Scheme for the Simulation of Fluid Flow With Free Surface—Part II: Application to the Cavity Filling and Sloshing Problems,” Int. J. Numer. Methods Fluids, 42(7), pp. 791–812. [CrossRef]
Viecelli, J. A. , 1969, “ A Method for Including Arbitrary External Boundaries in the MAC Incompressible Fluid Computing Technique,” J. Comput. Phys., 4(4), pp. 543–551. [CrossRef]
Hirt, C. W. , Amsden, A. A. , and Cook, J. L. , 1997, “ An Arbitrary Lagrangian–Eulerian Computing Method for All Flow Speeds,” J. Comput. Phys., 135(2), pp. 203–216. [CrossRef]
Hughes, T. J. , Liu, W. K. , and Zimmermann, T. K. , 1981, “ Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows,” Comput. Methods Appl. Mech. Eng., 29(3), pp. 329–349. [CrossRef]
Navti, S. E. , Ravindran, K. , Taylor, C. , and Lewis, R. W. , 1997, “ Finite Element Modelling of Surface Tension Effects Using a Lagrangian-Eulerian Kinematic Description,” Comput. Methods Appl. Mech. Eng., 147(1–2), pp. 41–60. [CrossRef]
Oñate, E. , and García, J. , 2001, “A Finite Element Method for Fluid--Structure Interaction With Surface Waves Using a Finite Calculus Formulation,” Comput. Methods Appl. Mech. Eng., 191(6–7), pp. 635–660.
Soulaimani, A. , and Saad, Y. , 1998, “ An Arbitrary Lagrangian-Eulerian Finite Element Method for Solving Three-Dimensional Free Surface Flows,” Comput. Methods Appl. Mech. Eng., 162(1–4), pp. 79–106. [CrossRef]
Belytschko, T. , Liu, W. K. , Moran, B. , and Elkhodary, K. , 2013, Nonlinear Finite Elements for Continua and Structures, Wiley, New York.
Adami, S. , Hu, X. Y. , and Adams, N. A. , 2012, “ A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics,” J. Comput. Phys., 231(21), pp. 7057–7075. [CrossRef]
Colagrossi, A. , and Landrini, M. , 2003, “ Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics,” J. Comput. Phys., 191(2), pp. 448–475. [CrossRef]
Colagrossi, A. , 2005, “A Meshless Lagrangian Method for Free–Surface and Interface Flows With Fragmentation,” Ph.D. thesis , Università di Roma, Rome, Italy. http://cfd.mace.manchester.ac.uk/sph/SPH_PhDs/2003/Colagrossi_PHD_Thesis.pdf
González, D. , Cueto, E. , Chinesta, F. , and Doblaré, M. , 2007, “ A Natural Element Updated Lagrangian Strategy for Free-Surface Fluid Dynamics,” J. Comput. Phys., 223(1), pp. 127–150. [CrossRef]
Kondo, M. , and Koshizuka, S. , 2011, “ Improvement of Stability in Moving Particle Semi‐Implicit Method,” Int. J. Numer. Methods Fluids, 65(6), pp. 638–654. [CrossRef]
Monaghan, J. J. , and Gingold, R. A. , 1983, “ Shock Simulation by the Particle Method SPH,” J. Comput. Phys., 52(2), pp. 374–389. [CrossRef]
Monaghan, J. J. , and Kocharyan, A. , 1995, “ SPH Simulation of Multi-Phase Flow,” Comput. Phys. Commun., 87(1–2), pp. 225–235. [CrossRef]
Monaghan, J. J. , and Kos, A. , 1999, “ Solitary Waves on a Cretan Beach,” J. Waterw., Port, Coastal, Ocean Eng., 125(3), pp. 145–155. [CrossRef]
Monaghan, J. J. , 1988, “ An Introduction to SPH,” Comput. Phys. Commun., 48(1), pp. 89–96. [CrossRef]
Monaghan, J. J. , 1992, “ Smoothed Particle Hydrodynamics,” Annu. Rev. Astron. Astrophys., 30(1), pp. 543–574. [CrossRef]
Monaghan, J. J. , 1994, “ Simulating Free Surface Flows With SPH,” J. Comput. Phys., 110(2), pp. 399–406. [CrossRef]
Monaghan, J. J. , Cas, R. A. F. , Kos, A. M. , and Hallworth, M. , 1999, “ Gravity Currents Descending a Ramp in a Stratified Tank,” J. Fluid Mech., 379, pp. 39–69. [CrossRef]
Shao, S. , and Lo, E. Y. , 2003, “ Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows With a Free Surface,” Adv. Water Resour., 26(7), pp. 787–800. [CrossRef]
Nayroles, B. , Touzot, G. , and Villon, P. , 1992, “ Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,” Comput. Mech., 10(5), pp. 307–318. [CrossRef]
Pape, D. , Thornton, B. , and Yugulis, K. , 2016, “ Slosh Characteristics of Aggregated Intermediate Bulk Containers on Single-Unit Trucks,” Federal Motor Carrier Safety Administration, U.S. Department of Transportation, Washington, DC.
Cheli, F. , D'Alessandro, V. , Premoli, A. , and Sabbioni, E. , 2013, “ Simulation of Sloshing in Tank Trucks,” Int. J. Heavy Veh. Syst., 20(1), pp. 1–18. [CrossRef]
Elliott, A. S. , Slattengren, J. , and Buijk, A. , 2006, “Fully Coupled Fluid/Mechanical Response Prediction for Truck-Mounted Tank Sloshing Using Cosimulation of MSC.ADAMS® and MSC.Dytran®,” SAE Paper No. 2006-01-0932.
Barton, M. S. , Corson, D. , Quigley, J. , Emami, B. , and Kush, T. , 2014, “Tanker Truck Sloshing Simulation Using Bi-Directionally Coupled CFD and Multi-Body Dynamics Solvers,” SAE Paper No. 2014-01-2442.
Wei, C. , Wang, L. , and Shabana, A. A. , 2015, “ A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications,” ASME J. Comput. Nonlinear Dyn., 10(5), p. 051014. [CrossRef]
Shi, H. , Wang, L. , Nicolsen, B. , and Shabana, A. A. , 2017, “ Integration of Geometry and Analysis for the Study of Liquid Sloshing in Railroad Vehicle Dynamics,” Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn., 231(4), pp. 608–629.
Nicolsen, B. , Wang, L. , and Shabana, A. , 2017, “ Nonlinear Finite Element Analysis of Liquid Sloshing in Complex Vehicle Motion Scenarios,” J. Sound Vib., 405, pp. 208–233. [CrossRef]
Abdolmaleki, K. , Thiagarajan, K. P. , and Morris-Thomas, M. T. , 2004, “ Simulation of the Dam Break Problem and Impact Flows Using a Navier–Stokes Solver,” Simulations, 13, p. 17. http://people.eng.unimelb.edu.au/imarusic/proceedings/15/AFMC00031.pdf
Brufau, P. , and Garcia-Navarro, P. , 2000, “ Two-Dimensional Dam Break Flow Simulation,” Int. J. Numer. Methods Fluids, 33(1), pp. 35–57. [CrossRef]
Huerta, A. , and Liu, W. K. , 1988, “ Viscous Flow With Large Free Surface Motion,” Comput. Methods Appl. Mech. Eng., 69(3), pp. 277–324. [CrossRef]
Korobkin, A. , and Yilmaz, O. , 2009, “ The Initial Stage of Dam-Break Flow,” J. Eng. Math., 63(2–4), pp. 293–308. [CrossRef]
Rakhsha, M. , Pazouki, A. , and Negrut, D. , 2016, “Incompressible Implicit SPH,” Technical Report No. TR03. http://sbel.wisc.edu/documents/TR-2016-03.pdf
Rumold, W. , 2001, “ Modeling and Simulation of Vehicles Carrying Liquid Cargo,” Multibody Syst. Dyn., 5(4), pp. 351–374. [CrossRef]
Shin, S. , and Lee, W. I. , 2000, “ Finite Element Analysis of Incompressible Viscous Flow With Moving Free Surface by Selective Volume of Fluid Method,” Int. J. Heat Fluid Flow, 21(2), pp. 197–206. [CrossRef]
Stansby, P. K. , Chegini, A. , and Barnes, T. C. D. , 1998, “ The Initial Stages of Dam-Break Flow,” J. Fluid Mech., 374, pp. 407–424. [CrossRef]
Wang, S. P. , and Wang, K. K. , 1994, “ A Net Inflow Method for Incompressible Viscous Flow With Moving Free Surface,” Int. J. Numer. Methods Fluids, 18(7), pp. 669–694. [CrossRef]
Martin, J. C. , and Moyce, W. J. , 1952, “ Part IV—An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane,” Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci., 244(882), pp. 312–324. [CrossRef]
Shabana, A. A. , 2017, Computational Continuum Mechanics, 3rd ed., Wiley, Chichester, UK.
Langtangen, H. P. , Mardal, K. A. , and Winther, R. , 2002, “ Numerical Methods for Incompressible Viscous Flow,” Adv. Water Resour., 25(8), pp. 1125–1146. [CrossRef]
González, J. A. , Lee, Y. S. , and Park, K. C. , 2017, “ Stabilized Mixed Displacement–Pressure Finite Element Formulation for Linear Hydrodynamic Problems With Free Surfaces,” Comput. Methods Appl. Mech. Eng., 319, pp. 314–337. [CrossRef]
Kim, N. H. , 2014, Introduction to Nonlinear Finite Element Analysis, Springer Science & Business Media, New York.
Jun, L. , 1988, “ Numerical Simulation of Flow With Moving Interface,” PhysicoChemical Hydrodyn., 10(5), p. 625.
Okamoto, T. , and Kawahara, M. , 1990, “ Two‐Dimensional Sloshing Analysis by Lagrangian Finite Element Method,” Int. J. Numer. Methods Fluids, 11(5), pp. 453–477. [CrossRef]
Ramaswamy, B. , Kawahara, M. , and Nakayama, T. , 1986, “ Lagrangian Finite Element Method for the Analysis of Two‐Dimensional Sloshing Problems,” Int. J. Numer. Methods Fluids, 6(9), pp. 659–670. [CrossRef]
Sung, J. , Choi, H. G. , and Yoo, J. Y. , 1999, “ Finite Element Simulation of Thin Liquid Film Flow and Heat Transfer Including a Hydraulic Jump,” Int. J. Numer. Methods Eng., 46(1), pp. 83–101. [CrossRef]
Shabana, A. A. , Zaazaa, K. E. , and Sugiyama, H. , 2008, Railroad Vehicle Dynamics: A Computational Approach, CRC, Boca Raton, FL.
Olshevskiy, A. , Dmitrochenko, O. , and Kim, C. , 2013, “ Three- and Four-Noded Planar Elements Using Absolute Nodal Coordinate Formulation,” Multibody Syst. Dyn., 29(3), pp. 255–269. [CrossRef]
Lobovský, L. , Botia-Vera, E. , Castellana, F. , Mas-Soler, J. , and Souto-Iglesias, A. , 2014, “ Experimental Investigation of Dynamic Pressure Loads During Dam Break,” J. Fluids Struct., 48, pp. 407–434. [CrossRef]
Osher, S. , and Sethian, J. A. , 1988, “ Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Phys., 79(1), pp. 12–49. [CrossRef]
López-Villa, A. , Zamudio, L. S. , and Medina, A. , 2014, “ The Boundary Element Method in Fluid Mechanics: Application to Bubble Growth,” Experimental and Computational Fluid Mechanics, Springer International Publishing, Cham, Switzerland, pp. 17–48. [CrossRef]
McDonald, P. W. , 1971, “The Computation of Transonic Flow Through Two-Dimensional Gas Turbine Cascades,” ASME Paper No. 71-GT-89.
MacCormack, R. , and Paullay, A. , 1972, “Computational Efficiency Achieved by Time Splitting of Finite Difference Operators,” AIAA Paper No. 72-154.
Fluent, 2001, FLUENT 6 User's Guide, Fluent Inc., Canonsburg, PA.
Olshevskiy, A. , Dmitrochenko, O. , and Kim, C. W. , 2013, “ Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation,” ASME J. Comput. Nonlinear Dyn., 9(2), p. 021001. [CrossRef]
Ketabdari, M. J. , and Roozbahani, A. N. , 2013, “ Numerical Simulation of Plunging Wave Breaking by the Weakly Compressible Smoothed Particle Hydrodynamic Method,” J. Appl. Mech. Tech. Phys., 54(3), pp. 477–486. [CrossRef]
Pathak, A. , and Raessi, M. , 2016, “ A 3D, Fully Eulerian, VOF-Based Solver to Study the Interaction Between Two Fluids and Moving Rigid Bodies Using the Fictitious Domain Method,” J. Comput. Phys., 311, pp. 87–113. [CrossRef]
Ahn, H. T. , Shashkov, M. , and Christon, M. A. , 2009, “ The Moment‐of‐Fluid Method in Action,” Int. J. Numer. Methods Biomed. Eng., 25(10), pp. 1009–1018.
Ransing, R. S. , Savino, S. , and Lewis, R. W. , 2005, “ Numerical Optimization of Tilt Casting Process,” Int. J. Cast Met. Res., 18(2), pp. 109–118. [CrossRef]
Cruchaga, M. A. , Celentano, D. J. , and Tezduyar, T. E. , 2005, “ Moving-Interface Computations With the Edge-Tracked Interface Locator Technique (ETILT),” Int. J. Numer. Methods Fluids, 47(6–7), pp. 451–469. [CrossRef]


Grahic Jump Location
Fig. 1

Experiment (H=0.05715 m)

Grahic Jump Location
Fig. 2

The three general fluid configurations

Grahic Jump Location
Fig. 3

Flowchart of the numerical solution procedure

Grahic Jump Location
Fig. 4

Example of lateral interpenetration between the fluid and the dam wall (penetration is magnified)

Grahic Jump Location
Fig. 5

Fluid deformed shape at t=0.08s for different mesh refinements: (a) 1, (b) 16, (c) 64, and (d) 100 elements

Grahic Jump Location
Fig. 6

Water front evolution in time predicted using rectangular ANCF elements ( 9 Elements, 16 Elements, 64 Elements, 100 Elements)

Grahic Jump Location
Fig. 7

Free surface profiles for the broken dam problem predicted using 100 planar elements: (a) 0.04 s, (b) 0.08 s, (c) 0.10 s, and (d) 0.13 s

Grahic Jump Location
Fig. 8

Comparison between the ANCF planar solution (left) and the experimental results of Lobovský et al. [60] (right). Free surface evolution is measured at times t*=0,t*=1.27,t*=1.67,t*=1.87 (H=600 mm, A=1010 mm).

Grahic Jump Location
Fig. 9

Velocity field at different times for the broken dam problem using uniform 10×10 rectangular element mesh; velocity is in m/s. (a) t=0.04 s, (b) t=0.08 s, and (c) t=0.13 s.

Grahic Jump Location
Fig. 10

Water front motion, comparison between two-dimensional ANCF analysis and existing results ( Level Set, BEM, SPH, FLUENT, Experimental, ANCF (100 elements))

Grahic Jump Location
Fig. 11

Surge in the water front motion in case of impact with a wall placed at the end of the dam dry deck ( Martin and Moyce [49], from Lobovský et al. [60], ANCF (100 elements))

Grahic Jump Location
Fig. 12

Free surface profiles for the broken dam problem in three dimensions (10×10×2 elements): (a) 0.04 s, (b) 0.08 s, and (c) 0.10 s

Grahic Jump Location
Fig. 13

Water front motion, comparison between three-dimensional ANCF analysis and existing results. ( Level Set, BEM, SPH, FLUENT, Experimental, ANCF (10×10×2 elements)).

Grahic Jump Location
Fig. 14

Velocity field at different time points for the broken dam problem using 10×10×2 solid element mesh: (a) t=0.04 s, (b) t=0.08 s, and (c) t=0.13 s




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In