Robert,
C.
, and
Casella,
G.
, 2013, Monte Carlo Statistical Methods,
Springer Science & Business Media, New York.

Morokoff,
W.
, and
Caflisch,
R.
, 1995, “
Quasi-Monte Carlo Integration,” J. Comput. Phys.,
122(2), pp. 218–230.

[CrossRef]
Tarantola,
A.
, 2005, Inverse Problem Theory and Methods for Model Parameter Estimation,
Society for Industrial and Applied Mathematics,
Philadelphia, PA.

[CrossRef]
Mosegaard,
K.
, and
Tarantola,
A.
, 1995, “
Monte Carlo Sampling of Solutions to Inverse Problems,” J. Geophys. Res.: Solid Earth,
100(B7), pp. 12431–12447.

[CrossRef]
Spall,
J. C.
, 2005, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, Vol.
65,
Wiley,
Hoboken, NJ.

Spall,
J.
, 1992, “
Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation,” IEEE Trans. Autom. Control,
37(3), pp. 332–341.

[CrossRef]
Huan,
X.
, and
Marzouk,
Y.
, 2013, “
Simulation-Based Optimal Bayesian Experimental Design for Nonlinear Systems,” J. Comput. Phys.,
232(1), pp. 288–317.

[CrossRef]
Tsilifis,
P.
,
Ghanem,
R.
, and
Hajali,
P.
, 2017, “
Efficient Bayesian Experimentation Using an Expected Information Gain Lower Bound,” SIAM/ASA J. Uncertainty Quantif.,
5(1), pp. 30–62.

[CrossRef]
Ghanem,
R.
, and
Spanos,
P.
, 2012, Stochastic Finite Elements: A Spectral Approach, Revised Edition,
Dover Publications,
Mineola, NY.

Xiu,
D.
, and
Karniadakis,
G.
, 2002, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM J. Sci. Comput.,
24(2), pp. 619–644.

[CrossRef]
Babuska,
I.
,
Nobile,
F.
, and
Tempone,
R.
, 2007, “
A Stochastic Collocation Method for Elliptic Partial Differential Equations With Random Input Data,” SIAM J. Numer. Anal.,
45(3), pp. 1005–1034.

[CrossRef]
Reagan,
M.
,
Najm,
H.
,
Ghanem,
R.
, and
Knio,
O.
, 2003, “
Uncertainty Quantification in Reacting-Flow Simulations Through Non-Intrusive Spectral Projection,” Combust. Flame,
132(3), pp. 545–555.

[CrossRef]
Bilionis,
I.
, and
Zabaras,
N.
, 2012, “
Multi-Output Local Gaussian Process Regression: Applications to Uncertainty Quantification,” J. Comput. Phys.,
231(17), pp. 5718–5746.

[CrossRef]
Bilionis,
I.
,
Zabaras,
N.
,
Konomi,
B.
, and
Lin,
G.
, 2013, “
Multi-Output Separable Gaussian Process: Towards an Efficient, Fully Bayesian Paradigm for Uncertainty Quantification,” J. Comput. Phys.,
241, pp. 212–239.

[CrossRef]
Ma,
X.
, and
Zabaras,
N.
, 2009, “
An Adaptive Hierarchical Sparse Grid Collocation Algorithm for the Solution of Stochastic Differential Equations,” J. Comput. Phys.,
228(8), pp. 3084–3113.

[CrossRef]
Saltelli,
A.
,
Ratto,
M.
,
Andres,
T.
,
Campolongo,
F.
,
Cariboni,
J.
,
Gatelli,
D.
,
Saisana,
M.
, and
Tarantola,
S.
, 2008, Global Sensitivity Analysis: The Primer,
Wiley,
Chichester, UK.

Sobol',
I.
, 1990, “
On Sensitivity Estimation for Nonlinear Mathematical Models,” Mat. Model.,
2, pp. 112–118.

Owen,
A.
, 2013, “
Variance Components and Generalized Sobol' Indices,” SIAM/ASA J. Uncertainty Quantif.,
1(1), pp. 19–41.

[CrossRef]
Karhunen,
K.
, 1946, “
Über Lineare Methoden in Der Wahrscheinlichkeits-Rechnung,” Ann. Acad. Sci. Fennicade Ser. A1, Math. Phys.,
37, pp. 3–79.

Loéve,
M.
, 1955, Probability Theory,
D. Van Nostrand,
Princeton, NJ.

Pearson,
K.
, 1901, “
Liii. on Lines and Planes of Closest Fit to Systems of Points in Space,” London, Edinburgh, Dublin Philos. Mag. J. Sci.,
2(11), pp. 559–572.

[CrossRef]
Ma,
X.
, and
Zabaras,
N.
, 2011, “
Kernel Principal Component Analysis for Stochastic Input Model Generation,” J. Comput. Phys.,
230(19), pp. 7311–7331.

[CrossRef]
Constantine,
P.
,
Dow,
E.
, and
Wang,
Q.
, 2014, “
Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces,” SIAM J. Sci. Comput.,
36(4), pp. A1500–A1524.

[CrossRef]
Constantine,
P.
,
Emory,
M.
,
Larsson,
J.
, and
Iaccarino,
G.
, 2015, “
Exploiting Active Subspaces to Quantify Uncertainty in the Numerical Simulation of the Hyshot Ii Scramjet,” J. Comput. Phys.,
302, pp. 1–20.

[CrossRef]
Lukaczyk,
T.
,
Palacios,
F.
,
Alonso,
J.
, and
Constantine,
P.
, 2014, “
Active Subspaces for Shape Optimization,” AIAA Paper No. AIAA 2014-1171.

Ghanem,
R.
, 1998, “
Scales of Fluctuation and the Propagation of Uncertainty in Random Porous Media,” Water Resour. Res.,
34(9), pp. 2123–2136.

[CrossRef]
Ghanem,
R.
, and
Dham,
S.
, 1998, “
Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media,” Transp. Porous Media,
32(3), pp. 239–262.

[CrossRef]
Najm,
H.
, 2009, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics,” Annu. Rev. Fluid Mech.,
41(1), pp. 35–52.

[CrossRef]
Le Maître,
O.
,
Reagan,
M.
,
Najm,
H.
,
Ghanem,
R.
, and
Knio,
O.
, 2002, “
A Stochastic Projection Method for Fluid Flow—II: Random Process,” J. Comput. Phys.,
181(1), pp. 9–44.

[CrossRef]
Xiu,
D.
, and
Karniadakis,
G.
, 2003, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos,” J. Comput. Phys.,
187(1), pp. 137–167.

[CrossRef]
Arnst,
M.
,
Ghanem,
R.
, and
Soize,
C.
, 2010, “
Identification of Bayesian Posteriors for Coefficients of Chaos Expansions,” J. Comput. Phys.,
229(9), pp. 3134–3154.

[CrossRef]
Ghanem,
R.
,
Doostan,
A.
, and
Red-Horse,
J.
, 2008, “
A Probabilistic Construction of Model Validation,” Comput. Methods Appl. Mech. Eng.,
197(29–32), pp. 2585–2595.

[CrossRef]
Ghanem,
R.
, and
Red-Horse,
J.
, 1999, “
Propagation of Probabilistic Uncertainty in Complex Physical Systems Using a Stochastic Finite Element Approach,” Phys. D: Nonlinear Phenom.,
133(1–4), pp. 137–144.

[CrossRef]
Marzouk,
Y. M.
,
Najm,
H. N.
, and
Rahn,
L.
, 2007, “
Stochastic Spectral Methods for Efficient Bayesian Solution of Inverse Problems,” J. Comput. Phys.,
224(2), pp. 560–586.

[CrossRef]
Marzouk,
Y.
, and
Najm,
H.
, 2009, “
Dimensionality Reduction and Polynomial Chaos Acceleration of Bayesian Inference in Inverse Problems,” J. Comput. Phys.,
228(6), pp. 1862–1902.

[CrossRef]
Ghanem,
R.
, and
Doostan,
R.
, 2006, “
Characterization of Stochastic System Parameters From Experimental Data: A Bayesian Inference Approach,” J. Comput. Phys.,
217(1), pp. 63–81.

[CrossRef]
Sudret,
B.
, 2007, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions,” Reliab. Eng. Syst. Saf.,
93(7), pp. 964–979.

[CrossRef]
Crestaux,
T.
,
Le Maître,
O.
, and
Martinez,
J.
, 2009, “
Polynomial Chaos Expansion for Sensitivity Analysis,” Reliab. Eng. Syst. Saf.,
94(7), pp. 1161–1172.

[CrossRef]
Le Maître,
O.
, and
Knio,
O.
, 2015, “
Pc Analysis of Stochastic Differential Equations Driven by Wiener Noise,” Reliab. Eng. Syst. Saf.,
135, pp. 107–124.

[CrossRef]
Lucor,
D.
,
Meyers,
J.
, and
Sagaut,
P.
, 2007, “
Sensitivity Analysis of Large-Eddy Simulations to Subgrid-Scale-Model Parametric Uncertainty Using Polynomial Chaos,” J. Fluid Mech.,
585, pp. 255–279.

[CrossRef]
Blatman,
G.
, and
Sudret,
B.
, 2008, “
Sparse Polynomial Chaos Expansions and Adaptive Stochastic Finite Elements Using a Regression Approach,” C. R. Méc.,
336(6), pp. 518–523.

[CrossRef]
Peng,
J.
,
Hampton,
J.
, and
Doostan,
A.
, 2014, “
A Weighted ℓ1-Minimization Approach for Sparse Polynomial Chaos Expansions,” J. Comput. Phys.,
267, pp. 92–111.

[CrossRef]
Yang,
X.
, and
Karniadakis,
G.
, 2013, “
Reweighted ℓ1 Minimization Method for Stochastic Elliptic Differential Equations,” J. Comput. Phys.,
248, pp. 87–108.

[CrossRef]
Hampton,
J.
, and
Doostan,
A.
, 2015, “
Compressive Sampling of Polynomial Chaos Expansions: Convergence Analysis and Sampling Strategies,” J. Comput. Phys.,
280, pp. 363–386.

[CrossRef]
Tipireddy,
R.
, and
Ghanem,
R.
, 2014, “
Basis Adaptation in Homogeneous Chaos Spaces,” J. Comput. Phys.,
259, pp. 304–317.

[CrossRef]
Tsilifis,
P.
, and
Ghanem,
R.
, 2017, “
Reduced Wiener Chaos Representation of Random Fields Via Basis Adaptation and Projection,” J. Comput. Phys.,
341, pp. 102–120.

[CrossRef]
Thimmisetty,
C.
,
Tsilifis,
P.
, and
Ghanem,
R.
, 2017, “
Homogeneous Chaos Basis Adaptation for Design Optimization Under Uncertainty: Application to the Oil Well Placement Problem,” Ai Edam,
31(3), pp. 265–276.

Yang,
X.
,
Lei,
H.
,
Baker,
N.
, and
Lin,
G.
, 2016, “
Enhancing Sparsity of Hermite Polynomial Expansions by Iterative Rotations,” J. Comput. Phys.,
307, pp. 94–109.

[CrossRef]
Tsilifis,
P.
,
Huan,
X.
,
Safta,
C.
,
Sargsyan,
K.
,
Lacaze,
G.
,
Oefelein,
J.
,
Najm,
H.
, and
Ghanem,
R.
, 2018, “
Compressive Sensing Adaptation for Polynomial Chaos Expansions,” Preprint .

Tripathy,
R.
,
Bilionis,
I.
, and
Gonzalez,
M.
, 2016, “
Gaussian Processes With Built-in Dimensionality Reduction: Applications to High-Dimensional Uncertainty Propagation,” J. Comput. Phys.,
321, pp. 191–223.

[CrossRef]
Golub,
G.
, and
Van Loan,
C.
, 2012, Matrix Computations, Vol.
3,
JHU Press,
Baltimore, MD.

Cho,
C.
, 1971, “
Convective Transport of Ammonium With Nitrification in Soil,” Can. J. Soil Sci.,
51(3), pp. 339–350.

[CrossRef]
McNab,
W.
, and
Narasimhan,
T.
, 1993, “
A Multiple Species Transport Model With Sequential Decay Chain Interactions in Heterogeneous Subsurface Environments,” Water Resour. Res.,
29(8), pp. 2737–2746.

[CrossRef]
Van Genuchten,
M.
, 1985, “
Convective-Dispersive Transport of Solutes Involved in Sequential First-Order Decay Reactions,” Comput. Geosci.,
11(2), pp. 129–147.

[CrossRef]
Pruess,
K.
,
Oldenburg,
C.
, and
Moridis,
G.
, 1999, “
TOUGH2 User's Guide, Version 2,”
Earth Sciences Division, Lawrence Berkeley National Laboratory,
Berkeley, CA, Report No. LBNL-43134.

Oldenburg,
C.
, and
Pruess,
K.
, 1995, “
EOS7R: Radionuclide Transport for TOUGH2,”
Earth Sciences Division, Lawrence Berkeley National Laboratory,
Berkeley, CA, Report No. LBL-34868.

Soize,
C.
, and
Desceliers,
C.
, 2010, “
Computational Aspects for Constructing Realizations of Polynomial Chaos in High Dimension,” SIAM J. Sci. Comput.,
32(5), pp. 2820–2831.

[CrossRef]