Noh,
W. F.
, 1987, “
Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux,” J. Comput. Phys.,
72(1), pp. 78–120.

[CrossRef]
Gehmeyr,
M.
,
Cheng,
B.
, and
Mihalas,
D.
, 1997, “
Noh's Constant-Velocity Shock Problem Revisited,” Shock Waves,
7(5), pp. 255–274.

[CrossRef]
Ramsey,
S.
,
Boyd,
Z.
, and
Burnett,
S.
, 2016, “
Solution of the Noh Problem Using the Universal Symmetry of the Gas Dynamics Equations,” Shock Waves,
27(3), pp. 477–485.

[CrossRef]
Jones,
J. B.
, and
Dugan,
R. E.
, 1995, *Engineering Thermodynamics*, Prentice Hall, Upper Saddle River, NJ, p. 244.

Axford,
R. A.
, 2000, “
Solutions of the Noh Problem for Various Equations of State Using Lie Groups,” Laser Part. Beams,
18(1), pp. 93–100.

[CrossRef]
Menikoff,
R.
, and
Plohr,
B. J.
, 1989, “
The Riemann Problem for Fluid Flow of Real Materials,” Rev. Mod. Phys,
61(1), pp. 75–130.

[CrossRef]
Banks,
J. W.
, 2010, “
On Exact Conservation for the Euler Equations With Complex Equations of State,” Commun. Comput. Phys.,
8(5), pp. 995–1015.

Whitham,
G. B.
, 1974, Linear and Nonlinear Waves,
Wiley,
New York.

Toro,
E. F.
, 1997, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer, Berlin.

Harlow,
F. H.
, and
Pracht,
W. E.
, 1966, “
Formation and Penetration of High-Speed Collapse Jets,” Phys. Fluids,
9(10), pp. 1951–1959.

[CrossRef]
Harlow,
F. H.
, and
Amsden,
A. A.
, 1971, “
Fluid Dynamics,” Los Alamos Scientific Laboratory Monograph, Los Alamos, NM, Report No. LA-4700.

Wei,
Y. S.
, and
Sadus,
R. J.
, 2000, “
Equations of State for the Calculation of Fluid-Phase Equilibria,” AIChE J.,
46(1), pp. 169–196.

[CrossRef]
Cole,
R. H.
, 1948, Underwater Explosions,
Princeton University Press,
Princeton, NJ.

Courant,
R.
, and
Friedrichs,
K. O.
, 1944, Supersonic Flow and Shock Waves: A Manual on the Mathematical Theory of Non-Linear Wave Motion,
Courant Institute,
NYU, New York.

Eliezer,
S.
,
Ghatak,
A.
, and
Hora,
H.
, 2002, Fundamentals of Equations of State,
World Scientific,
Singapore.

Weixin,
L.
, 1986, “
Simplified Equation of State P= P (ρ, E) and P= P (ρ, T) for Condensed Matter,” Shock Waves in Condensed Matter,
Y. M. Gupta
, ed.,
Plenum Press,
New York, pp. 167–173.

Johnston,
I. A.
, 2005, “
The Noble-Abel Equation of State: Thermodynamic Derivations for Ballistics Modelling,” Defence Science and Technology Organisation, Edinburgh, Australia, Report No. DSTO-TN-0670

http://www.dtic.mil/docs/citations/ADA454209.

Corner,
J.
, 1950, Theory of the Interior Ballistics of Guns,
Wiley,
New York.

Baibuz,
V. F.
,
Zitserman,
V. Y.
,
Golubushkin,
L. M.
, and
Malyshev,
I. G.
, 1986, “
The Covolume and Equation of State of High-Temperature Real Gases,” J. Eng. Phys. Thermophys.,
51(2), pp. 955–956.

[CrossRef]
Khaksarfard,
R.
,
Kameshki,
M. R.
, and
Paraschivoiu,
M.
, 2010, “
Numerical Simulation of High Pressure Release and Dispersion of Hydrogen Into Air With Real Gas Model,” Shock Waves,
20(3), pp. 205–216.

[CrossRef]
Chenoweth,
D. R.
, 1983, “
Gas-Transfer Analysis. Section H—Real Gas Results Via the Van Der Waals Equation of State and Virial-Expansion Extensions of Its Limiting Abel-Noble Form,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND-83-8229.

Emanuel,
G.
, 1987, Advanced Classical Thermodynamics,
American Institute of Aeronautics and Astronautics,
Washington, DC.

Annamalai,
K.
,
Puri,
I. K.
, and
Jog,
M. A.
, 2011, Advanced Thermodynamics Engineering, 2nd ed.,
CRC Press,
Boca Raton, FL.

Hirn,
G. A.
, 1875, Théorie Mécanique De La Chaleur, 3rd ed.,
Gauthier-Villars,
Paris, France.

Partington,
J. R.
, 1949, An Advanced Treatise on Physical Chemistry, Vol.
1,
Longmans, Green Co,
London.

Cagle,
F. W., Jr.
, 1972, “
A Classification of Equations of State,” J. Chem. Educ.,
49(5), pp. 345–347.

[CrossRef] [PubMed]
van der Waals,
J. D.
, and
Rowlinson,
J. S.
, 2004, On the Continuity of the Gaseous and Liquid States,
Dover,
Mineola, NY.

Xiang,
H. W.
, 2005, The Corresponding-States Principle and Its Practice: Thermodynamic, Transport and Surface Properties of Fluids,
Elsevier,
Amsterdam, The Netherlands.

Carnahan,
N. F.
, and
Starling,
K. E.
, 1969, “
Equation of State for Nonattracting Rigid Spheres,” J. Chem. Phys,
51(2), pp. 635–636.

[CrossRef]
Hansen,
J.-P.
, and
McDonald,
I. R.
, 1986, Theory of Simple Liquids,
Academic Press,
San Diego, CA.

Song,
Y.
,
Mason,
E. A.
, and
Stratt,
R. M.
, 1989, “
Why Does the Carnahan-Starling Equation Work so Well?,” J. Chem. Phys,
93(19), pp. 6916–6919.

[CrossRef]
Burton,
D. E.
, 1992, “
Connectivity Structures and Differencing Techniques for Staggered-Grid Free-Lagrange Hydrodynamics,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-JC-110555.

Burton,
D. E.
, 1994, “
Consistent Finite Volume Discretization of Hydrodynamic Conservation Laws for Unstructured Grids,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-JC-118788.

Caramana,
E. J.
,
Burton,
D. E.
,
Shashkov,
M. J.
, and
Whalen,
P. P.
, 1998, “
The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy,” J. Comput. Phys.,
146(1), pp. 227–262.

[CrossRef]
Majda,
A.
, and
Ralston,
J.
, 1979, “
Discrete Shock Profiles for Systems of Conservation Laws,” Commun. Pure Appl. Math.,
32(4), pp. 445–482.

[CrossRef]
Banks,
J. W.
,
Aslam,
T.
, and
Rider,
W. J.
, 2008, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes,” J. Comput. Phys.,
227(14), pp. 6985–7002.

[CrossRef]
Godunov,
S. K.
, 1954, “
Difference Methods for Shock Waves,” Ph.D. dissertation, Moscow State University, Moscow, Russia.

Godunov,
S. K.
, 1959, “
A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics,” Mat. Sb. (N.S.),
45(89), pp. 271–306

http://mi.mathnet.ru/eng/msb4873.

Ovsiannikov,
L. V.
, 1982, Group Analysis of Differential Equations,
Academic Press,
New York.

Boyd,
Z. M.
,
Ramsey,
S. D.
, and
Baty,
R. S.
, 2017, “
On the Existence of Self-Similar Converging Shocks in Non-Ideal Materials,” Q. J. Mech. Appl. Math.,
70(4), pp. 401–417.

[CrossRef]
Clausius,
R.
, 1880, “
Ueber Das Verhalten Der Kohlensäure in Bezug Auf Druck, Volumen Und Temperatur,” Ann. Phys. (Berlin),
245(3), pp. 337–357.

[CrossRef]
McQuarrie,
D. A.
, 1973, Statistical Mechanics,
Harper and Row,
New York.

Moré,
J. J.
,
Garbow,
B. S.
, and
Hillstrom,
K. E.
, 1980, “
User Guide for MINPACK-1,” Argonne National Laboratory, Washington, DC, Report No. ANL-80-74.

Hendon,
R. C.
, and
Ramsey,
S. D.
, 2016, “
Conduction Invariance in Similarity Solutions for Compressible Flow Code Verification,” ASME J. Verif. Valid. Uncertainty,
1(2), p. 021004.

[CrossRef]
Ramsey,
S. D.
, and
Lilieholm,
J. F.
, 2017, “
Verification Assessment of Piston Boundary Conditions for Lagrangian Simulation of the Guderley Problem,” ASME J. Verif. Valid. Uncertainty,
2(3), p. 031001.

[CrossRef]
Ramsey,
S. D.
,
Ivancic,
P. R.
, and
Lilieholm,
J. F.
, 2016, “
Verification Assessment of Piston Boundary Conditions for Lagrangian Simulation of Compressible Flow Similarity Solutions,” ASME J. Verif. Valid. Uncertainty,
1(2), p. 021003.

[CrossRef]
Doebling,
S.
, and
Ramsey,
S.
, 2013, “
Impact of Artificial Viscosity Models on Verification Assessment of a Lagrangian Hydrodynamics Code Using the Sedov Problem,” ASME Paper No. VVUQ-17-1015.

Pederson,
C.
,
Brown,
B.
, and
Morgan,
N.
, 2016, “
The Sedov Blast Wave as a Radial Piston Verification Test,” ASME J. Verif. Valid. Uncertainty,
1(3), p. 031001.

[CrossRef]
Morgan,
N. R.
,
Burton,
D. E.
, and
Lipnikov,
K. N.
, 2013, “
Theory and Motivation Behind the Godunov-Like Staggered Grid Hydrodynamic Approach in FLAG,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-13-24229.

von Neumann,
J.
, and
Richtmyer,
R. D.
, 1950, “
A Method for the Numerical Calculation of Hydrodynamic Shocks,” J. Appl. Phys.,
21(3), pp. 232–237.

[CrossRef]
Richtmyer,
R. D.
, and
Morton,
K. W.
, 1967, Difference Methods for Initial-Value Problems, 2nd ed.,
Wiley,
New York.

Rider,
W. J.
, 2000, “
Revisiting Wall Heating,” J. Comput. Phys.,
162(2), pp. 395–410.

[CrossRef]
Singleton
,
R., Jr.
,
Israel,
D. M.
,
Doebling,
S. W.
,
Woods,
C. N.
,
Kaul,
A.
,
Walter,
J. W.
, and
Rogers,
M. L.
, 2016, “
ExactPack Documentation,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR–16-23260

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-23260.

Exactpack, 2017, “
Open Source Software Package Developed for Code Verification,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-CC-14-047.

Oberkampf,
W. L.
, and
Roy,
C. J.
, 2010, Verification and Validation in Scientific Computing,
Cambridge University Press,
Cambridge, UK.

Roache,
P. J.
, 1998, Verification and Validation in Computational Science and Engineering,
Hermosa,
Albuquerque, NM.

Gittings,
M.
,
Weaver,
R.
,
Clover,
M.
,
Betlach,
T.
,
Byrne,
N.
,
Coker,
R.
,
Dendy,
E.
,
Hueckstaedt,
R.
,
New,
K.
,
Oakes,
W. R.
,
Ranta,
D.
, and
Stefan,
R.
, 2008, “
The RAGE Radiation-Hydrodynamic Code,” Comput. Sci. Dis.,
1(1), p. 015005.

[CrossRef]
Yorke,
C. E.
,
Howard,
A. D.
,
Burnett,
S. C.
,
Honnell,
K. G.
,
Ramsey,
S. D.
, and
Singleton,
R. L., Jr.
, 2017, “
Extension of the Planar Noh Problem to Aluminum, Iron, Copper, and Tungsten,” AIP Conf. Proc.,
1979(1), p. 140006.

Hutchens,
G. J.
, 1990, “
Finite-Strength Shock Propagation for Alternative Equations of State,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana and Champaign, IL.

Guderley,
G. V.
, 1942, “
Starke Kugelige Und Zylindrische Verdichtungsstösse in Der Nähe Des Kugelmittelpunktes Bzw. der Zylinderachse,” Luftfahrtforschung,
19(9), pp. 302–312.

Ramsey,
S. D.
,
Schmidt,
E. M.
,
Boyd,
Z. M.
,
Lilieholm,
J. F.
, and
Baty,
R. S.
, 2017, “
Converging Shock Flows for a Mie-Grüneisen Equation of State,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-17-30971.

Axford,
R. A.
, and
Holm,
D. D.
, 1978, “
Spherical Shock Collapse in a Non-Ideal Medium,” IUTAM/IMU Symposium, Group Theoretical Methods in Mechanics, Novosibirsk, Russia, Aug. 25–29, pp. 47–56.

Sod,
G. A.
, 1978, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws,” J. Comput. Phys.,
27(1), pp. 1–31.

[CrossRef]