Research Papers

Verification Studies for the Noh Problem Using Nonideal Equations of State and Finite Strength Shocks

[+] Author and Article Information
Sarah C. Burnett

Department of Mathematics,
University of Maryland, College Park
College Park, MD 20742
e-mail: burnetts@math.umd.edu

Kevin G. Honnell

Computational Physics Division,
Los Alamos National Laboratory,
Los Alamos, NM 87545
e-mail: kgh@lanl.gov

Scott D. Ramsey

Theoretical Design Division,
Los Alamos National Laboratory,
Los Alamos, NM 87545
e-mail: ramsey@lanl.gov

Robert L. Singleton, Jr.

Computational Physics Division,
Los Alamos National Laboratory,
Los Alamos, NM 87545
e-mail: bobs1@lanl.gov

Manuscript received June 16, 2017; final manuscript received July 21, 2018; published online September 17, 2018. Assoc. Editor: Sumanta Acharya. The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States government purposes.

J. Verif. Valid. Uncert 3(2), 021002 (Sep 17, 2018) (10 pages) Paper No: VVUQ-17-1023; doi: 10.1115/1.4041195 History: Received June 16, 2017; Revised July 21, 2018

The Noh verification test problem is extended beyond the commonly studied ideal gamma-law gas to more realistic equations of state (EOSs) including the stiff gas, the Noble-Abel gas, and the Carnahan–Starling EOS for hard-sphere fluids. Self-similarity methods are used to solve the Euler compressible flow equations, which, in combination with the Rankine–Hugoniot jump conditions, provide a tractable general solution. This solution can be applied to fluids with EOSs that meet criterion such as it being a convex function and having a corresponding bulk modulus. For the planar case, the solution can be applied to shocks of arbitrary strength, but for the cylindrical and spherical geometries, it is required that the analysis be restricted to strong shocks. The exact solutions are used to perform a variety of quantitative code verification studies of the Los Alamos National Laboratory Lagrangian hydrocode free Lagrangian (FLAG).

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Noh, W. F. , 1987, “ Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux,” J. Comput. Phys., 72(1), pp. 78–120. [CrossRef]
Gehmeyr, M. , Cheng, B. , and Mihalas, D. , 1997, “ Noh's Constant-Velocity Shock Problem Revisited,” Shock Waves, 7(5), pp. 255–274. [CrossRef]
Ramsey, S. , Boyd, Z. , and Burnett, S. , 2016, “ Solution of the Noh Problem Using the Universal Symmetry of the Gas Dynamics Equations,” Shock Waves, 27(3), pp. 477–485. [CrossRef]
Jones, J. B. , and Dugan, R. E. , 1995, Engineering Thermodynamics, Prentice Hall, Upper Saddle River, NJ, p. 244.
Axford, R. A. , 2000, “ Solutions of the Noh Problem for Various Equations of State Using Lie Groups,” Laser Part. Beams, 18(1), pp. 93–100. [CrossRef]
Menikoff, R. , and Plohr, B. J. , 1989, “ The Riemann Problem for Fluid Flow of Real Materials,” Rev. Mod. Phys, 61(1), pp. 75–130. [CrossRef]
Banks, J. W. , 2010, “ On Exact Conservation for the Euler Equations With Complex Equations of State,” Commun. Comput. Phys., 8(5), pp. 995–1015.
Whitham, G. B. , 1974, Linear and Nonlinear Waves, Wiley, New York.
Toro, E. F. , 1997, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer, Berlin.
Harlow, F. H. , and Pracht, W. E. , 1966, “ Formation and Penetration of High-Speed Collapse Jets,” Phys. Fluids, 9(10), pp. 1951–1959. [CrossRef]
Harlow, F. H. , and Amsden, A. A. , 1971, “ Fluid Dynamics,” Los Alamos Scientific Laboratory Monograph, Los Alamos, NM, Report No. LA-4700.
Wei, Y. S. , and Sadus, R. J. , 2000, “ Equations of State for the Calculation of Fluid-Phase Equilibria,” AIChE J., 46(1), pp. 169–196. [CrossRef]
Cole, R. H. , 1948, Underwater Explosions, Princeton University Press, Princeton, NJ.
Courant, R. , and Friedrichs, K. O. , 1944, Supersonic Flow and Shock Waves: A Manual on the Mathematical Theory of Non-Linear Wave Motion, Courant Institute, NYU, New York.
Eliezer, S. , Ghatak, A. , and Hora, H. , 2002, Fundamentals of Equations of State, World Scientific, Singapore.
Weixin, L. , 1986, “ Simplified Equation of State P= P (ρ, E) and P= P (ρ, T) for Condensed Matter,” Shock Waves in Condensed Matter, Y. M. Gupta , ed., Plenum Press, New York, pp. 167–173.
Johnston, I. A. , 2005, “ The Noble-Abel Equation of State: Thermodynamic Derivations for Ballistics Modelling,” Defence Science and Technology Organisation, Edinburgh, Australia, Report No. DSTO-TN-0670 http://www.dtic.mil/docs/citations/ADA454209.
Corner, J. , 1950, Theory of the Interior Ballistics of Guns, Wiley, New York.
Baibuz, V. F. , Zitserman, V. Y. , Golubushkin, L. M. , and Malyshev, I. G. , 1986, “ The Covolume and Equation of State of High-Temperature Real Gases,” J. Eng. Phys. Thermophys., 51(2), pp. 955–956. [CrossRef]
Khaksarfard, R. , Kameshki, M. R. , and Paraschivoiu, M. , 2010, “ Numerical Simulation of High Pressure Release and Dispersion of Hydrogen Into Air With Real Gas Model,” Shock Waves, 20(3), pp. 205–216. [CrossRef]
Chenoweth, D. R. , 1983, “ Gas-Transfer Analysis. Section H—Real Gas Results Via the Van Der Waals Equation of State and Virial-Expansion Extensions of Its Limiting Abel-Noble Form,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND-83-8229.
Emanuel, G. , 1987, Advanced Classical Thermodynamics, American Institute of Aeronautics and Astronautics, Washington, DC.
Annamalai, K. , Puri, I. K. , and Jog, M. A. , 2011, Advanced Thermodynamics Engineering, 2nd ed., CRC Press, Boca Raton, FL.
Hirn, G. A. , 1875, Théorie Mécanique De La Chaleur, 3rd ed., Gauthier-Villars, Paris, France.
Partington, J. R. , 1949, An Advanced Treatise on Physical Chemistry, Vol. 1, Longmans, Green Co, London.
Cagle, F. W., Jr. , 1972, “ A Classification of Equations of State,” J. Chem. Educ., 49(5), pp. 345–347. [CrossRef] [PubMed]
van der Waals, J. D. , and Rowlinson, J. S. , 2004, On the Continuity of the Gaseous and Liquid States, Dover, Mineola, NY.
Xiang, H. W. , 2005, The Corresponding-States Principle and Its Practice: Thermodynamic, Transport and Surface Properties of Fluids, Elsevier, Amsterdam, The Netherlands.
Carnahan, N. F. , and Starling, K. E. , 1969, “ Equation of State for Nonattracting Rigid Spheres,” J. Chem. Phys, 51(2), pp. 635–636. [CrossRef]
Hansen, J.-P. , and McDonald, I. R. , 1986, Theory of Simple Liquids, Academic Press, San Diego, CA.
Song, Y. , Mason, E. A. , and Stratt, R. M. , 1989, “ Why Does the Carnahan-Starling Equation Work so Well?,” J. Chem. Phys, 93(19), pp. 6916–6919. [CrossRef]
Burton, D. E. , 1992, “ Connectivity Structures and Differencing Techniques for Staggered-Grid Free-Lagrange Hydrodynamics,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-JC-110555.
Burton, D. E. , 1994, “ Consistent Finite Volume Discretization of Hydrodynamic Conservation Laws for Unstructured Grids,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-JC-118788.
Caramana, E. J. , Burton, D. E. , Shashkov, M. J. , and Whalen, P. P. , 1998, “ The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy,” J. Comput. Phys., 146(1), pp. 227–262. [CrossRef]
Majda, A. , and Ralston, J. , 1979, “ Discrete Shock Profiles for Systems of Conservation Laws,” Commun. Pure Appl. Math., 32(4), pp. 445–482. [CrossRef]
Banks, J. W. , Aslam, T. , and Rider, W. J. , 2008, “ On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes,” J. Comput. Phys., 227(14), pp. 6985–7002. [CrossRef]
Godunov, S. K. , 1954, “ Difference Methods for Shock Waves,” Ph.D. dissertation, Moscow State University, Moscow, Russia.
Godunov, S. K. , 1959, “ A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics,” Mat. Sb. (N.S.), 45(89), pp. 271–306 http://mi.mathnet.ru/eng/msb4873.
Ovsiannikov, L. V. , 1982, Group Analysis of Differential Equations, Academic Press, New York.
Boyd, Z. M. , Ramsey, S. D. , and Baty, R. S. , 2017, “ On the Existence of Self-Similar Converging Shocks in Non-Ideal Materials,” Q. J. Mech. Appl. Math., 70(4), pp. 401–417. [CrossRef]
Clausius, R. , 1880, “ Ueber Das Verhalten Der Kohlensäure in Bezug Auf Druck, Volumen Und Temperatur,” Ann. Phys. (Berlin), 245(3), pp. 337–357. [CrossRef]
McQuarrie, D. A. , 1973, Statistical Mechanics, Harper and Row, New York.
Moré, J. J. , Garbow, B. S. , and Hillstrom, K. E. , 1980, “ User Guide for MINPACK-1,” Argonne National Laboratory, Washington, DC, Report No. ANL-80-74.
Hendon, R. C. , and Ramsey, S. D. , 2016, “ Conduction Invariance in Similarity Solutions for Compressible Flow Code Verification,” ASME J. Verif. Valid. Uncertainty, 1(2), p. 021004. [CrossRef]
Ramsey, S. D. , and Lilieholm, J. F. , 2017, “ Verification Assessment of Piston Boundary Conditions for Lagrangian Simulation of the Guderley Problem,” ASME J. Verif. Valid. Uncertainty, 2(3), p. 031001. [CrossRef]
Ramsey, S. D. , Ivancic, P. R. , and Lilieholm, J. F. , 2016, “ Verification Assessment of Piston Boundary Conditions for Lagrangian Simulation of Compressible Flow Similarity Solutions,” ASME J. Verif. Valid. Uncertainty, 1(2), p. 021003. [CrossRef]
Doebling, S. , and Ramsey, S. , 2013, “ Impact of Artificial Viscosity Models on Verification Assessment of a Lagrangian Hydrodynamics Code Using the Sedov Problem,” ASME Paper No. VVUQ-17-1015.
Pederson, C. , Brown, B. , and Morgan, N. , 2016, “ The Sedov Blast Wave as a Radial Piston Verification Test,” ASME J. Verif. Valid. Uncertainty, 1(3), p. 031001. [CrossRef]
Morgan, N. R. , Burton, D. E. , and Lipnikov, K. N. , 2013, “ Theory and Motivation Behind the Godunov-Like Staggered Grid Hydrodynamic Approach in FLAG,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-13-24229.
von Neumann, J. , and Richtmyer, R. D. , 1950, “ A Method for the Numerical Calculation of Hydrodynamic Shocks,” J. Appl. Phys., 21(3), pp. 232–237. [CrossRef]
Richtmyer, R. D. , and Morton, K. W. , 1967, Difference Methods for Initial-Value Problems, 2nd ed., Wiley, New York.
Rider, W. J. , 2000, “ Revisiting Wall Heating,” J. Comput. Phys., 162(2), pp. 395–410. [CrossRef]
Singleton , R., Jr. , Israel, D. M. , Doebling, S. W. , Woods, C. N. , Kaul, A. , Walter, J. W. , and Rogers, M. L. , 2016, “ ExactPack Documentation,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR–16-23260 https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-23260.
Exactpack, 2017, “ Open Source Software Package Developed for Code Verification,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-CC-14-047.
Oberkampf, W. L. , and Roy, C. J. , 2010, Verification and Validation in Scientific Computing, Cambridge University Press, Cambridge, UK.
Roache, P. J. , 1998, Verification and Validation in Computational Science and Engineering, Hermosa, Albuquerque, NM.
Gittings, M. , Weaver, R. , Clover, M. , Betlach, T. , Byrne, N. , Coker, R. , Dendy, E. , Hueckstaedt, R. , New, K. , Oakes, W. R. , Ranta, D. , and Stefan, R. , 2008, “ The RAGE Radiation-Hydrodynamic Code,” Comput. Sci. Dis., 1(1), p. 015005. [CrossRef]
Yorke, C. E. , Howard, A. D. , Burnett, S. C. , Honnell, K. G. , Ramsey, S. D. , and Singleton, R. L., Jr. , 2017, “ Extension of the Planar Noh Problem to Aluminum, Iron, Copper, and Tungsten,” AIP Conf. Proc., 1979(1), p. 140006.
Kamm, J. R. , 2000, “ Evaluation of the Sedov-Von Neumann-Taylor Blast Wave Solution,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-00-6055 http://cococubed.asu.edu/papers/kamm_2000.pdf.
Hutchens, G. J. , 1990, “ Finite-Strength Shock Propagation for Alternative Equations of State,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana and Champaign, IL.
Guderley, G. V. , 1942, “ Starke Kugelige Und Zylindrische Verdichtungsstösse in Der Nähe Des Kugelmittelpunktes Bzw. der Zylinderachse,” Luftfahrtforschung, 19(9), pp. 302–312.
Ramsey, S. D. , Schmidt, E. M. , Boyd, Z. M. , Lilieholm, J. F. , and Baty, R. S. , 2017, “ Converging Shock Flows for a Mie-Grüneisen Equation of State,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-17-30971.
Axford, R. A. , and Holm, D. D. , 1978, “ Spherical Shock Collapse in a Non-Ideal Medium,” IUTAM/IMU Symposium, Group Theoretical Methods in Mechanics, Novosibirsk, Russia, Aug. 25–29, pp. 47–56.
Sod, G. A. , 1978, “ A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws,” J. Comput. Phys., 27(1), pp. 1–31. [CrossRef]


Grahic Jump Location
Fig. 1

The planar one-dimensional Noh problem (t = 0)—a uniform inwardly flowing fluid with pressure p0 and density ρ0 impinges on a hard wall (or an axis or a point in the cylindrical or spherical geometries)

Grahic Jump Location
Fig. 2

The planar one-dimensional Noh problem (t > 0)—an outwardly moving shock wave with a stagnant, compressed fluid behind it

Grahic Jump Location
Fig. 3

Convergence study for the planar Noble-Abel case when p0 = 1 Mbar and b = 0.4 cm3/g

Grahic Jump Location
Fig. 4

Density plots of the planar Noble-Abel gas, γ = 5/3, ρ0 = 1.0 g/cm3, b = 0.1 cm3/g: (a) p0 = 0.00 Mbar, (b) p0 = 0.01 Mbar, (c) p0 = 0.10 Mbar, and (d) p0 = 1.00 Mbar

Grahic Jump Location
Fig. 5

Density plots of the planar Noble-Abel gas, γ = 5/3, ρ0 = 1.0 g/cm3, p0 = 0.0 Mbar: (a) b = −0.2 cm3/g, (b) b = 0.0 cm3/g, (c) b = 0.2 cm3/g, (d) b = 0.4 cm3/g

Grahic Jump Location
Fig. 6

Density plots of the spherical Noble-Abel gas, γ = 5/3, ρ0 = 1.0 g/cm3, p0 = 0.0 Mbar: (a) b = 0.00 cm3/g, (b) b = 0.01 cm3/g, (c) b = 0.10 cm3/g, and (d) b = 0.20 cm3/g

Grahic Jump Location
Fig. 7

Relative error plots of the spherical Noble-Abel gas, γ = 5/3, ρ0 = 1.0 g/cm3, p0 = 0.0 Mbar: (a) b = 0.00 cm3/g, (b) b = 0.01 cm3/g, (c) b = 0.10 cm3/g, and (d) b = 0.20 cm3/g



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In