Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
NARROW
Date
Availability
1-4 of 4
Elasticity
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. DMD2019, 2019 Design of Medical Devices Conference, V001T10A019, April 15–18, 2019
Paper No: DMD2019-3313
Abstract
Palpation, or physical manipulation of tissue to assess mechanical properties is one of the most prevalent and valuable clinical evaluations. Because physical interaction is needed, historically palpation has been limited to easily accessible surface level tissues. Magnetic resonance elastography (MRE) combines non-invasive Magnetic Resonance Imaging (MRI) with mechanically induced shear waves, producing the ability to map elasticity of soft tissues in vivo. Actuator design has been a limiting factor in MRE advancements. In this study, a mechanical resonator with adjustable resonant frequency was designed to be used in MRE applications. The designed piezoelectric actuator was fully MRI compatible, and capable of dynamically adjusting its resonant frequency. The purpose was to keep the displacement amplitude sufficiently large over a wide actuation frequency range. The outer stage of the amplifier contained movable side masses for tuning resonance frequency.
Proceedings Papers
Proc. ASME. DMD2017, 2017 Design of Medical Devices Conference, V001T01A010, April 10–13, 2017
Paper No: DMD2017-3444
Abstract
Blood pressure is an indicator of a cardiovascular functioning and could provide early symptoms of cardiovascular system impairment. Blood pressure measurement using catheterization technique is considered the gold standard for blood pressure measurement [1]. However, due its invasive nature and complexity, non-invasive techniques of blood pressure estimation such as auscultation, oscillometry, and volume clamping have gained wide popularity [1]. While these non-invasive cuff based methodologies provide a good estimate of blood pressure, they are limited by their inability to provide a continuous estimate of blood pressure [1–2]. Continuous blood pressure estimate is critical for monitoring cardiovascular diseases such as hypertension and heart failure. Pulse transit time (PTT) is a time taken by a pulse wave to travel between a proximal and distal arterial site [3]. The speed at which pulse wave travels in the artery has been found to be proportional to blood pressure [1, 3]. A rise in blood pressure would cause blood vessels to increase in diameter resulting in a stiffer arterial wall and shorter PTT [1–3]. To avail such relationship with blood pressure, PTT has been extensively used as a marker of arterial elasticity and a non-invasive surrogate for arterial blood pressure estimation. Typically, a combination of electrocardiogram (ECG) and photoplethysmogram (PPG) or arterial blood pressure (ABP) signal is used for the purpose of blood pressure estimation [3], where the proximal and distal timing of PTT (also referred as pulse arrival time, PAT) is marked by R peak of ECG and a foot/peak of a PPG, respectively. In the literature, it has been shown that PAT derived using ECG-PPG combination infers an inaccurate estimate of blood pressure due to the inclusion of isovolumetric contraction period [1–3, 4]. Seismocardiogram (SCG) is a recording of chest acceleration due to heart movement, from which the opening and closing of the aortic valve can be obtained [5]. There is a distinct point on the dorso-ventral SCG signal that marks the opening of the aortic valve (annotated as AO). In the literature, AO has been proposed for timing the onset of the proximal pulse of the wave [6–8]. A combination of AO as a proximal pulse and PPG as a distal pulse has been used to derive pulse transit time and is shown to be correlated with blood pressure [7]. Ballistocardiogram (BCG) which is a measure of recoil forces of a human body in response to pumping of blood in blood vessels has also been explored as an alternative to ECG for timing proximal pulse [5, 9]. Use of SCG or BCG for timing the proximal point of a pulse can overcome the limitation of ECG-based PTT computation [6–7, 9]. However, a limitation of current blood pressure estimation systems is the requirement of two morphologically different signals, one for annotating the proximal (ECG, SCG, BCG) and other for annotating the distal (PPG, ABP) timing of a pulse wave. In the current research, we introduce a methodology to derive PTT from seismocardiograms alone. Two accelerometers were used for such purpose, one was placed on the xiphoid process of the sternum (marks proximal timing) and the other one was placed on the external carotid artery (marks distal timing). PTT was derived as a time taken by a pulse wave to travel between AO of both the xiphoidal and carotid SCG.
Proceedings Papers
Proc. ASME. FMD2013, ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation, V001T10A010, September 11–13, 2013
Paper No: FMD2013-16049
Abstract
In this article we present a finite element simulation of an active steerable surgical needle. The highly maneuverable actuated needle can be utilized in many cases involving diagnostic and therapeutic percutaneous procedures; for example, in prostate brachytherapy. To make the surgical needle able to navigate through the tissue accurately, avoiding sensitive organs, external bending forces are being provided by smart actuators attached to the needle body (see Fig. 1). The shape memory alloy (SMA) wires, namely Nitinol, with unique properties of super-elasticity, shape memory effect, and biocompatibility are suitable as an actuator. The attached SMA wires contract when heated due to the phase transformation and therefore bends the needle. A 3D finite element (FE) model of the SMA actuated steerable needle was developed and validated by a prototype to show the feasibility of the design and also to study the factors influencing needle deflection.
Proceedings Papers
Proc. ASME. FMD2013, ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation, V001T10A001, September 11–13, 2013
Paper No: FMD2013-16008
Abstract
Design of an artificial knee was developed using computer 3-D modeling, the high flexion knee was obtained by using a multi-radii design pattern, The increase of final 20 degrees in flexion was obtained by increasing the condylar radii of curvature. The model of the high flexion knee was developed and one of the models was subjected to finite element modeling and analysis. The compositions of components in the artificial knee were, femoral component and the tibial component were metal, whereas the patellar component and the meniscal insert were made using polyethylene. The metal component used for the analysis in this study was Ti6Al4V and the polyethylene used was UHMWPE. Overall biomaterials chosen were: meniscus (UHMWPE, mass = 0.0183701 kg, volume = 1.97518e-005 m3), tibial component (Ti6Al4V, mass = 0.0584655 kg, volume = 1.32013e-005 m3), femoral component (Ti6Al4V, mass = 0.153122 kg, volume = 3.45742e-005 m3), total artificial assembly (mass = 0.229958 kg, volume = 6.75e-005m3). However, in this design the load had been taken to 10 times the body weight. The weight over single knee is only half the maximum load as the load is shared between the two knee joints. Following were the loading conditions, taking average body weight to be 70Kgs and taking extreme loading conditions of up to 10 times the body weight, i.e. 700Kgs on each of the leg performed the Finite Element Analysis (FEA) over the newly designed knee. The loading was done at an increment of 100 Kgs. The loading conditions and the meshing details for the analysis of the assembly were Jacobian check: 4 points, element size: 0.40735 cm, tolerance: 0.20367 cm, quality: high, number of elements: 80909, number of nodes: 126898. A maximum load of 600 Kgs is optimum for this model. The other components observed linear elastic behavior for the applied loads. Based on these results it was determined that the load bearing capacity of the model were well within the failure levels of the materials used for the analysis. A maximum load of 600 Kgs is optimum for this model. The other components observed linear elastic behavior for the applied loads. Based on these results it was determined that the load bearing capacity of the model were well within the failure levels of the materials used for the analysis. Conclusion drawn from this is that for the first time an innovative new design of an artificial knee joint to suite a segment of some religious population has been developed. This allows them to pray, bend in different positions and squat without too much difficulty.