Efficient high-speed on/off valves are a critical technology for enabling digital control of hydraulic systems via pulse-width-modulation (PWM). High-speed valves, when used in virtually variable displacement pumps (VVDP), increase system bandwidth and reduce output pressure ripple by enabling higher PWM frequencies. Our approach to achieving high speed and large flow area with low actuation power is a unidirectional rotary valve designed specifically for PWM. In comparison to conventional valves, the rotary valve reduces valve actuation power from a cubic dependence on PWM frequency to a square dependence by eliminating motion reversals during transition. This paper presents experimental data that validates the rotary valve concept, valve design equations, and dynamic model of a rotary valve based VVDP. Our unoptimized prototype exhibits 65% efficiency at 50% displacement and 15Hz PWM frequency while the validated model projects that an optimized valve is capable of achieving 85% efficiency at 15Hz and 73% at 75Hz.

This content is only available via PDF.
You do not currently have access to this content.