Micro- and millimeter-scale resonant mass sensors have received widespread research attention due to their robust and highly-sensitive performance in a wide range of detection applications. A key performance metric associated with such systems is the sensitivity of the resonant frequency of a given device to changes in mass, which needs to be calibrated for different sensor designs. This calibration is complicated by the fact that the position of any added mass on a sensor can have an effect on the measured sensitivity, and thus a spatial sensitivity mapping is needed. To date, most approaches for experimental sensitivity characterization are based upon the controlled addition of small masses. These approaches include the direct attachment of microbeads via atomic force microscopy or the selective microelectrodeposition of material, both of which are time consuming and require specialized equipment. This work proposes a method of experimental spatial sensitivity measurement that uses an inkjet system and standard sensor readout methodology to map the spatially-dependent sensitivity of a resonant mass sensor — a significantly easier experimental approach. The methodology is described and demonstrated on a quartz resonator and used to inform practical sensor development.

This content is only available via PDF.
You do not currently have access to this content.