Abstract

The unprotected left turn of a connected automated vehicle (CAV) is investigated when it has a potential conflict with a connected human-driven vehicle (CHV) approaching in the opposite lane. A control architecture is proposed that includes interactions between the decision making, motion planning, and control levels. By utilizing the road context and information received via vehicle-to-everything (V2X) communication, a reduced state space representation is determined which allows the CAV to evaluate safety in a fast and efficient manner Using a temporal metric, a safety evaluation algorithm is developed which determines the safety of the decision making at controller level. To evaluate the algorithms, data collected with real vehicles is utilized.

This content is only available via PDF.
You do not currently have access to this content.