The mechanisms of phase re-distribution of gas/condensate flow in a deepwater steel lazy-wave riser after system shutdown have been studied numerically. The investigated system consists of a 15-mile long subsea pipeline tieback to a floating vessel, via a 9,800-ft long lazy-wave production riser. The subsea well is located at 6,350 ft of water. The system is insulated, and transports a gas-condensate mixture with liquid loading of 10 stb/mmscfd. This study reveals that besides pressure, the internal heat transfer during system cool-down is a key factor for the phase re-distribution between gas and liquid, and along the system. The liquid holdup variations are caused by the interfacial mass transfer between gas-liquid interface and phase re-distribution due to the combined effects of gravitational and buoyancy forces. Fluid cool down temperature “overshoot” in the lazy wave riser valley during system cool down has been observed. The pressure effect on the cool down temperature overshoot has been studied. The phenomenon is discussed based on fundamental heat transfer, phase equilibrium, and multiphase flow principles. The lazy wave riser configuration is a promising option for deepwater development, and gas/condensate flow is a multiphase flow phenomenon commonly encountered in raw gas transportation. The results of this study improve the understanding of multiphase flow transient behavior in deepwater pipeline/riser systems, and benefits gas/condensate production system design.
Skip Nav Destination
ASME 2002 Engineering Technology Conference on Energy
February 4–5, 2002
Houston, Texas, USA
Conference Sponsors:
- Petroleum Institute
ISBN:
0-7918-3591-X
PROCEEDINGS PAPER
Phase Re-Distribution and Heat Transfer in Gas/Condensate Flow Shut-In in a Deepwater Lazy-Wave Riser
Y. Doreen Chin,
Y. Doreen Chin
J. P. Kenny, Inc., Houston, TX
Search for other works by this author on:
K. Krishnathasan,
K. Krishnathasan
J. P. Kenny, Inc., Houston, TX
Search for other works by this author on:
I. Roberts
I. Roberts
J. P. Kenny, Inc., Houston, TX
Search for other works by this author on:
Y. Doreen Chin
J. P. Kenny, Inc., Houston, TX
K. Krishnathasan
J. P. Kenny, Inc., Houston, TX
I. Roberts
J. P. Kenny, Inc., Houston, TX
Paper No:
ETCE2002/PROD-29163, pp. 867-876; 10 pages
Published Online:
January 7, 2009
Citation
Chin, YD, Krishnathasan, K, & Roberts, I. "Phase Re-Distribution and Heat Transfer in Gas/Condensate Flow Shut-In in a Deepwater Lazy-Wave Riser." Proceedings of the ASME 2002 Engineering Technology Conference on Energy. Engineering Technology Conference on Energy, Parts A and B. Houston, Texas, USA. February 4–5, 2002. pp. 867-876. ASME. https://doi.org/10.1115/ETCE2002/PROD-29163
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
Advanced Geothermal Wellbore Hydraulics Model
J. Energy Resour. Technol (September,2000)
Flow Dynamics and Heat Transfer of Wavy Condensate Film
J. Heat Transfer (June,2001)
Special Issue on Advanced Thermal Processing
J. Heat Transfer (March,2011)
Related Chapters
Sampling
Consensus on Operating Practices for the Sampling and Monitoring of Feedwater and Boiler Water Chemistry in Modern Industrial Boilers (CRTD-81)
Natural Gas Transmission
Pipeline Design & Construction: A Practical Approach, Third Edition
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine