The abilities of neural networks combined with fuzzy logic offer interesting prospects for the active control of structures. By identification, they permit discarding the often delicate modeling step and they also permit the automatic regulation of the controllers that have non-linear characteristics. This study describes the application of neuro-fuzzy control to the dynamic behavior of structures. The study first explains the process chosen, which consists of two parts: • the first part is essential for the adjustment of the associated controller and concerns the neural identification of the structure studied; • the second part describes the controller development and the training stage; the controller is based on the simplest neural network model possible. This network is also able to translate Sugeno’s fuzzy function and optimize its performances according to a reference response. The study then presents two applications: the first deals with the identification and control of a linear mechanical system with two degrees of freedom. The second deals with the identification and control of the non-linear dynamic behavior of active electromagnetic actuators along one acting axis. In both cases, the results show the abilities and the efficiency of this process and underline the main advantage of this type of controller operating even on in a strongly non-linear system.
Skip Nav Destination
ASME 2002 Engineering Technology Conference on Energy
February 4–5, 2002
Houston, Texas, USA
Conference Sponsors:
- Petroleum Institute
ISBN:
0-7918-3591-X
PROCEEDINGS PAPER
Neuro-Fuzzy Active Control of Mechanical Structures
Pierre-Yves Couzon,
Pierre-Yves Couzon
INSA de Lyon, Villeurbanne Cedex, France
Search for other works by this author on:
Johan Der Hagopian,
Johan Der Hagopian
INSA de Lyon, Villeurbanne Cedex, France
Search for other works by this author on:
Luc Gaudiller
Luc Gaudiller
INSA de Lyon, Villeurbanne Cedex, France
Search for other works by this author on:
Pierre-Yves Couzon
INSA de Lyon, Villeurbanne Cedex, France
Johan Der Hagopian
INSA de Lyon, Villeurbanne Cedex, France
Luc Gaudiller
INSA de Lyon, Villeurbanne Cedex, France
Paper No:
ETCE2002/STRUC-29048, pp. 997-1003; 7 pages
Published Online:
January 7, 2009
Citation
Couzon, P, Der Hagopian, J, & Gaudiller, L. "Neuro-Fuzzy Active Control of Mechanical Structures." Proceedings of the ASME 2002 Engineering Technology Conference on Energy. Engineering Technology Conference on Energy, Parts A and B. Houston, Texas, USA. February 4–5, 2002. pp. 997-1003. ASME. https://doi.org/10.1115/ETCE2002/STRUC-29048
Download citation file:
1
Views
Related Proceedings Papers
Related Articles
Development of a Self-Organized Neuro-Fuzzy Model for System Identification
J. Vib. Acoust (August,2007)
Adaptive Fuzzy Sliding Mode Control for MIMO Nonaffine Dutch-Roll System
J. Dyn. Sys., Meas., Control (October,2017)
Adaptive Robust Backstepping Output Tracking Control for a Class of Uncertain Nonlinear Systems Using Neural Network
J. Dyn. Sys., Meas., Control (July,2018)
Related Chapters
Estimating Resilient Modulus Using Neural Network Models
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
An Adaptive Fuzzy Control for a Multi-Degree-of-Freedom System
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
Nonlinear System Multi-Step Predictive Control Based Neural Network Model and Genetic Algorithm
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3