One-dimensional fully developed channel flow was solved using a modified k–ω turbulence model that was recently proposed for use with high-order finite element schemes. In order to study this new turbulence model’s behavior, determine its dependence on boundary conditions and model constants, and find efficient methods for obtaining solutions, the model was first examined using a linear finite element discretization in 1D. The results showed that an accurate estimate of the parameter εk which is used to define k in terms of the working variable k~ is essential to get an accurate solution. Also, the turbulence model depended sensitively on an accurate estimate of the distance of the first grid point from the wall, which can be difficult to estimate in unstructured grids. This is used for the boundary condition of specific dissipation rate on the wall. This model was then implemented in a high-order finite element code that uses an unstructured mesh of triangles to verify that the 1D results were predictive of the behavior of the full 2D discretization. High-order 2D results were obtained on triangular meshes with element aspect ratios up to 250000.

This content is only available via PDF.
You do not currently have access to this content.