Computer simulations of multiphase flows are currently limited to two distinct regimes: Fluid elements that are much larger than the computational grid cells can be modeled using fully-resolved calculations, and fluid elements that are much smaller than the grid cells can be modeled using point-particle approximations. However, many flows involve fluid elements for which neither of these limits is appropriate. For simulations of spray atomization, in particular, the grid size needs to be small enough to resolve the details of the injected fluid stream, yet resolving the smallest droplets produced would require an impossibly large number of grid points. To simulate spray atomization or other flows with a wide range of fluid element sizes, then, it is necessary to develop a computational framework that can bridge the fully-resolved and point-particle regimes. The development of such a framework is the topic of this paper. We begin by borrowing the mathematical framework of “large-eddy simulations” of turbulence—the equations for the flowfield are mathematically filtered, producing a set of equations which are smooth above a certain size and contain a set of terms which model the effects of the smaller scales. Because the filtering provides a mathematically valid smoothing of the fluid interfaces, it is also a natural way of simulating fully-resolved fluid elements on a fixed grid. The subfilter-scale terms can be shown to be zero in the fully-resolved limit, and so fully-resolved simulations provide an appropriate test of the basic filtered-multiphase method, independent of the complex subgrid modeling that would be necessary for unresolved elements. In anticpation of future calculations of droplets, we demonstrate the method with two-dimensional calculations of fluid cylinder oscillations, and compare the results to an analytical solution.
Skip Nav Destination
ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
July 14–18, 2002
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-3616-9
PROCEEDINGS PAPER
Development of a Spatially-Filtered Method for Calculation of Multiphase Flow
Brooks Moses,
Brooks Moses
Stanford University, Stanford, CA
Search for other works by this author on:
Chris Edwards,
Chris Edwards
Stanford University, Stanford, CA
Search for other works by this author on:
Brian Helenbrook
Brian Helenbrook
Clarkson University, Potsdam, NY
Search for other works by this author on:
Brooks Moses
Stanford University, Stanford, CA
Chris Edwards
Stanford University, Stanford, CA
Brian Helenbrook
Clarkson University, Potsdam, NY
Paper No:
FEDSM2002-31231, pp. 473-483; 11 pages
Published Online:
February 24, 2009
Citation
Moses, B, Edwards, C, & Helenbrook, B. "Development of a Spatially-Filtered Method for Calculation of Multiphase Flow." Proceedings of the ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. Volume 2: Symposia and General Papers, Parts A and B. Montreal, Quebec, Canada. July 14–18, 2002. pp. 473-483. ASME. https://doi.org/10.1115/FEDSM2002-31231
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
A Comparison of Single and Multiphase Jets in a Crossflow Using Large Eddy Simulations
J. Eng. Gas Turbines Power (January,2007)
Large Eddy Simulation of a Smooth Circular Cylinder Oscillating Normal to a Uniform Flow
J. Fluids Eng (December,2000)
Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
J. Eng. Gas Turbines Power (June,2010)
Related Chapters
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Numerical Simulation of Nucleate Spray Cooling: Effect of Droplet Impact on Bubble Growth and Heat Transfer in a Thin Liquid Film
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Efficient Estimation of the High Dimensional Model Representation for Non-Linear Models (PSAM-0402)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)