In this investigation, an intelligent control system has been developed for Compact Multiphase Separation System (CMSS©) which consists of integrated configurations of three compact separators, namely, Gas-Liquid Cylindrical Cyclone (GLCC©), Liquid-Liquid Cylindrical Cyclone (LLCC©) and Liquid-Liquid Hydrocyclone (LLHC). This is a two-part paper, the first part deals with the Modeling and Simulation of the CMSS© and the second part (current paper) deals with Experimental Investigation. A new dual differential pressure sensor system has been implemented and tested for GLCC©, to eliminate the error in liquid level measurement due to change in watercut. A new watercut based control system using downstream pump speed control has been designed and tested for the LLCC© system. A new cascaded control strategy for change in set-point of differential pressure ratio using underflow quality from hydrocyclone has been designed and developed. Comparison of CMSS© performance simulator and experimental results shows that the control system simulator is capable of representing the real physical system and can be used to validate the controller design. Fuzzy logic controller has been successfully implemented and tested. Experimental results show a similar trend as the dynamic simulator results for the various input conditions and scenarios. The results from theoretical and experimental studies have shown that Free Water Knock Out (FWKO) CMSS© system can be readily deployed in the field using the control system strategies designed, implemented and tested in this study. Reliability analysis for FWKO CMSS© system has been conducted. System reliability has been calculated from reliability of components and performance reliability of the system. A new protocol has been introduced to calculate performance reliability based on performance failure of the system from simulation data. This protocol has been proven to predict performance reliability of a new system which does not have prior information on failure of components or devices.

This content is only available via PDF.
You do not currently have access to this content.