In recent years, high fogging has received increasing attention as a comparatively simple and cost-efficient means of gas turbine power augmentation. The effects of high fogging on the work of compression are studied in this paper from a fundamental perspective. Considered is a prototype configuration, namely the evaporation of droplets in an initially saturated mixture of air and water, which is exposed to a prescribed pressure rise. Two different approaches are applied: The first approach (‘ideal model’) assumes that thermodynamic equilibrium prevails. In the second approach (‘droplet model’) the finite time of evaporation is taken into account by introducing discrete droplets and modeling explicitly the heat and mass transfer between liquid and gaseous phase. For compression speeds representative of modern gas turbines, it is found that droplets of 1μm in diameter are small enough to allow for approximate equilibrium during compression. The influence of polytropic efficiency on the gains of high fogging is addressed, and it is shown that high fogging is more effective for compressors of lower efficiency.
Skip Nav Destination
ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
June 16–19, 2003
Atlanta, Georgia, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-3685-1
PROCEEDINGS PAPER
Model Analysis of High-Fogging Effects on the Work of Compression
Carlos Ha¨rtel,
Carlos Ha¨rtel
Alstom (Switzerland), Ltd., Baden, Switzerland
Search for other works by this author on:
Peter Pfeiffer
Peter Pfeiffer
Alstom (Switzerland), Ltd., Baden, Switzerland
Search for other works by this author on:
Carlos Ha¨rtel
Alstom (Switzerland), Ltd., Baden, Switzerland
Peter Pfeiffer
Alstom (Switzerland), Ltd., Baden, Switzerland
Paper No:
GT2003-38117, pp. 689-698; 10 pages
Published Online:
February 4, 2009
Citation
Ha¨rtel, C, & Pfeiffer, P. "Model Analysis of High-Fogging Effects on the Work of Compression." Proceedings of the ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. Volume 2: Turbo Expo 2003. Atlanta, Georgia, USA. June 16–19, 2003. pp. 689-698. ASME. https://doi.org/10.1115/GT2003-38117
Download citation file:
15
Views
0
Citations
Related Proceedings Papers
Related Articles
Gas Turbine Fogging Technology: A State-of-the-Art Review—Part II: Overspray Fogging—Analytical and Experimental Aspects
J. Eng. Gas Turbines Power (April,2007)
Overspray and Interstage Fog Cooling in Gas Turbine Compressor Using Stage-Stacking Scheme—Part I: Development of Theory and Algorithm
J. Thermal Sci. Eng. Appl (September,2010)
The Effect of Water Injection on Multispool Gas Turbine
Behavior
J. Eng. Gas Turbines Power (January,2006)
Related Chapters
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential