Internal mist/steam blade cooling technology is considered the future of high-temperature gas turbine systems that burn hydrogen or synthetic gases. This paper experimentally investigates the mist/steam heat transfer of three rows of circular jet impingement in a confined channel. Fine water droplets with an average diameter of 3-μm are generated by atomizing water through small nozzles under high pressure. The circular jets have a uniform diameter of 8-mm, and the distance between adjacent jets in a row is 3 diameters. Jets in different rows are staggered and the distance between rows is 1.5 diameters. The spacing of nozzle-to-target is 2.8 diameters. Experiments were conducted with Reynolds numbers at 7,500 and 15,000 and heat fluxes ranging from 3,350 to 13,400W/m2. The results indicate that the wall temperature significantly decreased because of mist injection. A region of high cooling enhancement is observed and more extensive than those employing one row of circular jets or a slot jet. While the details depend on flow conditions, it is seen that the enhanced region of 3-row jets is about 5 jet diameters at Re = 7,500, q” = 7.54 kW/m2, and ml/ms = 3.5%, compared to 2 jet diameters for single-row jets. The enhancement becomes negligible after a certain distance downstream. The maximum local cooling enhancement is up to 800% by injecting 3.5% of mist at low heat flux condition and 150% for high heat flux condition. The average cooling enhancement can achieve more than 100% within 2 jet-diameter distance from the stagnation line at Re = 15,000 and ml/ms = 1.5%.
Skip Nav Destination
ASME Turbo Expo 2004: Power for Land, Sea, and Air
June 14–17, 2004
Vienna, Austria
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4168-5
PROCEEDINGS PAPER
Mist/Steam Heat Transfer of Multiple Rows of Impinging Jets
Ting Wang,
Ting Wang
University of New Orleans, New Orleans, LA
Search for other works by this author on:
J. Leo Gaddis,
J. Leo Gaddis
Clemson University, Clemson, SC
Search for other works by this author on:
Xianchang Li
Xianchang Li
University of New Orleans, New Orleans, LA
Search for other works by this author on:
Ting Wang
University of New Orleans, New Orleans, LA
J. Leo Gaddis
Clemson University, Clemson, SC
Xianchang Li
University of New Orleans, New Orleans, LA
Paper No:
GT2004-54206, pp. 943-950; 8 pages
Published Online:
November 24, 2008
Citation
Wang, T, Gaddis, JL, & Li, X. "Mist/Steam Heat Transfer of Multiple Rows of Impinging Jets." Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 3: Turbo Expo 2004. Vienna, Austria. June 14–17, 2004. pp. 943-950. ASME. https://doi.org/10.1115/GT2004-54206
Download citation file:
12
Views
0
Citations
Related Proceedings Papers
Related Articles
Mist/Steam Heat Transfer in Confined Slot Jet Impingement
J. Turbomach (January,2001)
Free Jet Impingement Heat Transfer of a High Prandtl Number Fluid Under Conditions of Highly Varying Properties
J. Heat Transfer (August,1999)
Related Chapters
Introduction
Thermal Power Plant Cooling: Context and Engineering
Sampling
Consensus on Operating Practices for the Sampling and Monitoring of Feedwater and Boiler Water Chemistry in Modern Industrial Boilers (CRTD-81)
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration