As part of an ongoing effort to develop a micro-scale gas turbine engine for power generation and micropropulsion applications, this paper presents the design, modeling, and experimental assessment of a catalytic combustion system. Previous work has indicated that homogenous gas-phase microcombustors are severely limited by chemical reaction time-scales. Storable hydrocarbon fuels, such as propane, have been shown to blowout well below the desired mass flow rate per unit volume. Heterogeneous catalytic combustion has been identified as a possible improvement. Surface catalysis can increase hydrocarbon-air reaction rates, improve ignition characteristics, and broaden stability limits. Several radial inflow combustors were micromachined from silicon wafers using Deep Reactive Ion Etching (DRIE) and aligned fusion wafer bonding. The 191 mm3 combustion chambers were filled with platinum coated foam materials of various porosity and surface area. For near stoichiometric propane-air mixtures, exit gas temperatures of 1100 K were achieved at mass flow rates in excess of 0.35 g/s. This corresponds to a power density of approximately 1200 MW/m3; an 8.5-fold increase over the maximum power density achieved for gas-phase propane-air combustion in a similar geometry. Low order models including time-scale analyses and a one-dimensional steady-state plug-flow reactor model, were developed to elucidate the underlying physics and to identify important design parameters. High power density catalytic microcombustors were found to be limited by the diffusion of fuel species to the active surface, while substrate porosity and surface area-to-volume ratio were the dominant design variables.

This content is only available via PDF.
You do not currently have access to this content.