Circulation control inlet guide vanes (IGVs) may provide significant benefits over current IGVs that employ mechanical means for flow turning. This paper presents the results of a two-dimensional computational study on a circulation control IGV that takes advantage of the Coanda effect for flow vectoring. The IGV in this study is an uncambered airfoil that alters circulation around itself by means of a Coanda jet that exhausts along the IGV’s trailing edge surface. The IGV is designed for an axial inlet flow at a Mach number of 0.54 and an exit flow angle of 11 degrees. These conditions were selected to match the operating conditions of the 90% span section of the IGV of the TESCOM compressor rig at the Compressor Aero Research Laboratory (CARL) located at Wright-Patterson AFB, the hardware that is being used as the baseline in this study. The goal of the optimization was to determine the optimal jet height, trailing edge radius, and supply pressure that would meet the design criteria while minimizing the mass flow rate and pressure losses. The optimal geometry that was able to meet the design requirements had a jet height of h/Cn = 0.0057 and a trailing edge Radius R/Cn = 0.16. This geometry needed a jet to inflow total pressure ratio of 1.8 to meet the exit turning angle requirement. At this supply pressure ratio the mass flow rate required by the flow control system was 0.71 percent of the total mass flow rate through the engine. The optimal circulation control IGV had slightly lower pressure losses when compared with a reference cambered IGV.

This content is only available via PDF.
You do not currently have access to this content.