Squeeze Film Dampers (SFDs) are commonly used in turbomachinery to dampen shaft vibrations in rotor-bearing systems. The main factor deterring the success of analytical models for the prediction of SFD’s performance lays on the modeling of dynamic film rupture. Usually, the cavitation models developed for journal bearings are applied to SFDs. Yet, the characteristic motion of the SFD results in the entrapment of air into the oil film, producing a bubbly mixture that cannot be represented by these models. There is a need to identify and understand the parameters that affect air entrainment and subsequent formation of a bubbly air-oil mixture within the lubricant film. A previous model by Diaz and San Andre´s advanced estimation of the amount of film-entrapped air, based on a non-dimensional number that related both geometrical and operating parameters but limited to the short bearing approximation (i.e., neglecting circumferential flow). The present study extends their work to consider the effects of finite length-to-diameter ratios. This is achieved by means of a finite volume integration of the two-dimensional, Newtonian, compressible Reynolds equation combined with the effective mixture density and viscosity defined in the work of Diaz and San Andre´s. A flow balance at the open end of the film is devised to estimate the amount of air entrapped within the film. The results show, in dimensionless plots, a map of the amount of entrained air as a function of the Feed-Squeeze Flow Number, defined by Diaz and San Andre´s, and the Length-to-Diameter Ratio of the Damper. Entrained air is shown to decrease as the L/D ratio increases, going from the approximate solution of Diaz and San Andre´s for infinitely short SFDs down to no air entrainment for an infinite length SFD. The results of this research are of immediate engineering applicability. Furthermore, they represent a firm step to advance the understanding of the effects of air entrapment on the performance of SFDs.
Skip Nav Destination
ASME Turbo Expo 2008: Power for Land, Sea, and Air
June 9–13, 2008
Berlin, Germany
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4315-4
PROCEEDINGS PAPER
On the Numerical Prediction of Finite Length Squeeze Film Dampers Performance With Free Air Entrainment
Tilmer H. Me´ndez,
Tilmer H. Me´ndez
Universidad Simo´n Boli´var, Caracas, Venezuela
Search for other works by this author on:
Marco A. Ciaccia,
Marco A. Ciaccia
Universidad Simo´n Boli´var, Caracas, Venezuela
Search for other works by this author on:
Jorge E. Torres,
Jorge E. Torres
Universidad Simo´n Boli´var, Caracas, Venezuela
Search for other works by this author on:
Sergio E. Di´az
Sergio E. Di´az
Universidad Simo´n Boli´var, Caracas, Venezuela
Search for other works by this author on:
Tilmer H. Me´ndez
Universidad Simo´n Boli´var, Caracas, Venezuela
Marco A. Ciaccia
Universidad Simo´n Boli´var, Caracas, Venezuela
Jorge E. Torres
Universidad Simo´n Boli´var, Caracas, Venezuela
Sergio E. Di´az
Universidad Simo´n Boli´var, Caracas, Venezuela
Paper No:
GT2008-50368, pp. 31-39; 9 pages
Published Online:
August 3, 2009
Citation
Me´ndez, TH, Ciaccia, MA, Torres, JE, & Di´az, SE. "On the Numerical Prediction of Finite Length Squeeze Film Dampers Performance With Free Air Entrainment." Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 5: Structures and Dynamics, Parts A and B. Berlin, Germany. June 9–13, 2008. pp. 31-39. ASME. https://doi.org/10.1115/GT2008-50368
Download citation file:
7
Views
0
Citations
Related Proceedings Papers
Related Articles
On the Numerical Prediction of Finite Length Squeeze Film Dampers Performance With Free Air Entrainment
J. Eng. Gas Turbines Power (January,2010)
On the Hydraulics of Downward Sloping Pipes With Entrapped Air Pockets
J. Fluids Eng (January,2020)
Flow Patterns, Roller Characteristics, and Air Entrainment in Weak Hydraulic Jumps: Does Size Matter?
J. Fluids Eng (July,2022)
Related Chapters
Evaluating Functional Coupling in Aeration Basin Air Distribution Systems
Advances in Multidisciplinary Engineering
Common Compliant Platforms
Offshore Compliant Platforms: Analysis, Design, and Experimental Studies
An Adaptive Fuzzy Control for a Multi-Degree-of-Freedom System
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17