Partial admission is used widely for steam turbines to match their output power to the load demand. The occurrences or thresholds of most self-induced low-frequency vibrations are under partial admission conditions. But the destabilizing forces which cause rotor instability are seldom investigated under partial admission conditions especially for large power steam turbines. Full 3D CFD model is built for the control stage of a 600 MW steam turbine applying commercial codes. N-S equations are solved to investigate the flow fields in the control stage including all the blade passages and the labyrinth seal over the shroud. Interesting flow distributions are observed for the seal spaces at partial admission conditions. A correction formula is presented for partial admission labyrinth seal based on the classical one and a method is discussed for the estimation of partial-admission phase-angle-dependent stiffness coefficients. The destabilizing forces acting on the rotor system are calculated for different eccentricity angles and are compared with those under the concentric condition. The stiffness coefficients are solved under typical partial admission conditions. They are found to change dramatically with the phase angle. The results may be helpful for a deep understanding of the low-frequency variation problems of large power steam turbines under partial admission conditions.

This content is only available via PDF.
You do not currently have access to this content.