In steam turbine power plants, the appropriate design of the last stage blades is critical in determining the plant efficiency and reliability and competitiveness. A high level of technical expertise combined with many years of operating experience are required for the improvement of last stage designs that increases performance, without sacrificing mechanical reliability. This paper focuses on three main development areas that are key for the development of last stage blades, namely the aerodynamic design, the mechanical design and the validation process. The three different lengths of last stage blade (LSB) were developed of 41in, 45in and 49in (and a number of scaled variants). The aerodynamic design process involves 3D CFD and flow path analysis, considerations such as last stage blade flutter and water droplet erosion, and last stage guide design. The mechanical design includes finite element stress and dynamic analysis, appropriate selection of the blade material, the coupling of the LSB with the rotor and the design of the LSB snubber and shroud. Experimental measurements form a key part of the product validation, from both the mechanical reliability and performance points of view.

This content is only available via PDF.
You do not currently have access to this content.