An experimental analysis of confined premixed turbulent methane/air and hydrogen/air jet flames is presented. A generic lab scale burner for high-velocity preheated jets equipped with an optical combustion chamber was designed and set up. The size and operating conditions were configured to enable flame stabilization by recirculation of hot combustion products. The geometry of the rectangular confinement and an off-center positioning of the jet nozzle were chosen to resemble one burner nozzle of a FLOX®-based combustor. The off-center jet arrangement caused the formation of a pronounced lateral recirculation zone similar to the one in previously investigated FLOX®-combustors [1, 2]. The analysis was accomplished by different laser measurement techniques. Flame structures were visualized by OH* chemiluminescence imaging and planar laser-induced fluorescence of the OH radical. Laser Raman scattering was used to determine concentrations of the major species and the temperature. Velocity fields were measured with particle image velocimetry. Results of measurements in two confined jet flames are shown. The mixing of fresh gas with recirculating combustion products and the stabilization of the methane flame are discussed in detail. The presented findings deliver important information for the understanding of confined jet flames operated with different fuels. The obtained data sets can be used for the validation of numerical simulations as well.

This content is only available via PDF.
You do not currently have access to this content.