An optically accessible gas turbine combustor test rig was constructed to study the combustion characteristics of a coaxial hydrogen/air jet injected into a vitiated swirl crossflow. The test rig has two combustion zones. The main combustion zone (MCZ) is a swirl stabilized dump combustor, and the secondary combustion zone (SCZ) is a reacting crossflow jet, referred to as the jet-in-crossflow (JIC). The SCZ is located downstream of the MCZ. The JIC is a coaxial hydrogen/air jet that penetrates radially into the vitiated stream. The combustor was designed to study the effects of JIC conditions on the SCZ combustion process and in particular on NOx production. The jet velocity and equivalence ratio were systematically varied. A water-cooled sampling probe was used to extract exhaust gases downstream of the SCZ for emission measurements. The JIC flame structure was captured by OH-PLIF images which show the extent of the flame front and the depth of penetration into the vitiated stream. The OH-PLIF images were averaged to determine the JIC reaction zone and were compared to the Holdeman correlation.

This content is only available via PDF.
You do not currently have access to this content.