To understand the unsteady shock wave and wake effects on the film cooling performance over a transonic 3-D rotating stage, a series of numerical investigations have been conducted and are presented in this two-part paper. Part 1 is focused on the development of the computational model and methodology of the system setup and model qualification; Part 2 is to investigate the unsteady effects of shock waves and wakes on film cooling performance in a transonic rotating stage.

In Part 1, the film cooling experimental conditions (non-rotating) and test sections of Kopper et. al. and Hunter are selected for model qualification. The numerical computation is carried out by the commercial software Ansys/Fluent using the pressure based compressible flow governing equations. The effects of four turbulence models are carefully compared with the experimental data. The Realizable k-ε turbulence model is found to match the experimental data better than the other models and is thus used for the rest of the study, including Part 2. The results show that 1) the weak shock emanating from the neighboring stator’s trailing edge results in a temperature rise and a reduction of film cooling effectiveness on the suction side near the trailing edge, 2) cooling ejection from the trailing edge reduces the shock strength in the stator passage, 3) an increase in Mach number from 0.84 to 1.50 can reduce the total pressure losses of fluid flow near the end-walls, 4) the film cooling effectiveness increases with increasing blowing ratio and becomes more even on the stator with a higher blowing ratio, and 5) an increase in Mach number from 0.84 to 1.50 gives rise to a higher cooling effectiveness in the region from the cooling holes to 80% of the chord length of the stator on the pressure side, but becomes lower after this up to the trailing edge. However, on the stator’s suction side, higher Mach number results in a lower cooling effectiveness region around the film holes from 30% to 55% of the chord length, but cooling effectiveness increases downstream.

This content is only available via PDF.
You do not currently have access to this content.