An important subsystem in most surface transport vehicles is the forced-air cooling module. Under specific operational conditions of the vehicle the cooling system is the major noise source and the component with the largest consumption of energy. A comprehensive time domain simulation model was developed for simulation of the cooling module in a Diesel locomotive under realistic operational conditions. It includes the components that produce waste heat such as the engine, the turbo transmission, the brake, etc. and the cooling module with its fans. Given the operation of the locomotive e.g. in terms of speed vs. time along a track and its load, data from experimental full scale tests agree well with predictions from the time domain model. The onset of cooling fan operation is predicted well, with it their instantaneous energy consumption and sound radiation. Three optimized cooling unit assemblies for the new locomotive Voith Gravita 15L had been developed and pre-assessed utilizing the model and eventually tested in the locomotive under realistic operational conditions. A new thermodynamically advanced cooling unit with aerodynamically and acoustically optimized fans was found superior by approx. 2 dB (A) less sound power radiation and some 30% less energy consumption as compared to the benchmark. It is anticipated that those advantages are even more distinct as the ambient temperature decreases.

The work is part of the European FP7 transport research project ECOQUEST.

This content is only available via PDF.
You do not currently have access to this content.