The work presented in this paper is concerned with a methodology for substituting time consuming CFD investigations of the operational characteristics of axial fans by CFD-trained meta-models. For that, the fan geometry is parameterized by 25 physically interpretable quantities allowing for a huge variety of potential fan designs. The parameters are varied by Design of Experiment (DoE) and characteristic curves of approximately 10,000 fan designs are produced using the Reynolds-averaged Navier Stokes (RANS) method. Pressure rise, efficiency, and circumferentially averaged flow profiles upstream and downstream of the rotor are extracted from the RANS results and used to train the meta-models which are Artificial Neural Networks (ANN) or, more specifically, Multilayer Perceptrons (MLP). Special care is taken to mitigate extrapolation weaknesses of the MLPs which could compromise their suitability to compute the target function in optimization algorithms. With these extra efforts, it is possible to aerodynamically optimize axial fans for arbitrary design points within the range typical for axial or even mixed-flow fans according to Cordier’s diagram of turbo machinery. On top of that, designs with good efficiency are also found outside the well known Cordier range. In particular, an extension of feasible operating points towards untypically high specific fan diameters is observed. These findings are relevant for designs aiming at high total-to-static efficiency and make optimized axial fans compete with other fan types, especially with mixed-flow fans.
Skip Nav Destination
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
June 16–20, 2014
Düsseldorf, Germany
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4557-8
PROCEEDINGS PAPER
Performance Prediction of Axial Fans by CFD-Trained Meta-Models
Konrad Bamberger,
Konrad Bamberger
University of Siegen, Siegen, Germany
Search for other works by this author on:
Thomas Carolus
Thomas Carolus
University of Siegen, Siegen, Germany
Search for other works by this author on:
Konrad Bamberger
University of Siegen, Siegen, Germany
Thomas Carolus
University of Siegen, Siegen, Germany
Paper No:
GT2014-26877, V01AT10A028; 10 pages
Published Online:
September 18, 2014
Citation
Bamberger, K, & Carolus, T. "Performance Prediction of Axial Fans by CFD-Trained Meta-Models." Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 1A: Aircraft Engine; Fans and Blowers. Düsseldorf, Germany. June 16–20, 2014. V01AT10A028. ASME. https://doi.org/10.1115/GT2014-26877
Download citation file:
20
Views
0
Citations
Related Proceedings Papers
Related Articles
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Estimating Resilient Modulus Using Neural Network Models
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
Fitting a Function and Its Derivative
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17