Numerical modelling of internal cooling passages in gas turbine blades is a challenging task due to their physical characteristics, such as rounded duct corners, the presence of rib turbulators and their staggered locations between surfaces. This results in complex fluid dynamic phenomenon such as counter-rotating vortices and other secondary flow structures that can drive the heat transfer. Heat transfer mechanisms in such passages are inherently coupled with momentum transport and diffusion. Current industry practices for numerical modelling of such passages use unstructured mesh generation tools, steady Reynolds-averaged Navier-Stokes (RANS) equations and two-equation turbulence models such as k-ε and k-ω SST. This paper investigates two generic, engine-representative rib geometries using current numerical practices to determine their limitations. Three mesh generation tools and two turbulence models are compared across two rib geometries. The results are qualitatively and quantitatively compared to detailed experimental Nusselt numbers on the passage walls. It was found that as long as the rib geometry results in a secondary flow that directly impinges onto the wall, the meshing tools and turbulence models agree reasonably well with experiments. When the passage includes wall-wrapped ribs resulting in more complex secondary flows, this decreases the validity of the numerical tools, suggesting that more sophisticated modelling techniques are required as rib geometries continue to evolve.

This content is only available via PDF.
You do not currently have access to this content.