Process fluid lubricated thrust bearings (TBs) in a turbomachine control rotor placement due to axial loads arising from pressure fields on the front shroud and back surface of impellers. To date, prediction of aerodynamic induced thrust loads is still largely empirical. Thus needs persist to design and operate proven thrust bearings and to validate predictions of performance derived from often too restrictive computational tools. This paper describes a test rig for measurement of the load performance of water lubricated hydrostatic/hydrodynamic thrust bearings operating under conditions typical of cryogenic turbo pumps.

The test rig comprises of a rigid rotor composed of a thick shaft and two end collars. A pair of flexure-pivot hydrostatic journal bearings (38 mm in diameter) support the rotor and quill shaft connected to a drive motor. The test rig hosts two thrust bearings (8 pockets with inner diameter equal to 41 mm and outer diameter equal to 76 mm); one is a test bearing and the other is a slave bearing, both facing the outer side of the thrust collars on the rotor. The slave TB is affixed rigidly to a bearing support. A load system delivers an axial load to the test TB through a non-rotating shaft floating on two aerostatic radial bearings. The test TB displaces to impose a load on the rotor thrust collar and the slave TB reacts to the applied axial load.

The paper presents measurements of the TB operating axial clearance, flow rate and pocket pressure for conditions of increasing static load (max. 3,600 N) and shaft speed to 17.5 krpm (tip speed 69.8 m/s) and for an increasing water supply pressure into the thrust bearings, max. 17.2 bar (250 psig). Predictions from a bulk flow model that accounts for both fluid inertia and turbulence flow effects agree well with recorded bearing flow rates (supply and exiting thru the inner diameter), pocket pressure and ensuing film clearance due to the imposed external load. The measurements and predictions show a film clearance decreasing exponentially as the applied load increases. The bearing flow rate also decreases, and at the highest rotor speed and lowest supply pressure, the bearing is starved of lubricant on its inner diameter side, as predicted. The measured bearing flow rate and pocket pressure aid to the empirical estimation of the orifice discharge coefficient for use in the predictive tool. The test data and validation of a predictive tool give confidence to the integration of fluid film thrust bearings in cryogenic turbo pumps as well as in other more conventional (commercial) machinery. The USAF Upper Stage Engine Technology (USET) program funded the work during the first decade of the 21st century.

This content is only available via PDF.
You do not currently have access to this content.