In the context of smooth surfaces where no industrial process modifies the flow and where no roughness affects the boundary layer flow, there are configurations today where the correct heat flux prediction is still unattained for certain operating points. This is the case of the LS89 configuration that has shown to be of great difficulty to accurately simulate the thermal fields for high Reynolds number flows even when performing wall-resolved Large Eddy Simulations (LES). The physics of the studied operating point (MUR235) are especially complex due to the interaction of a transitioning boundary layer, shock waves and free-stream turbulence injected at the inlet. In this paper, free-stream turbulent specifications are seen to be important towards the capture of the heat transfer profile on most regions of the blade. The boundary layer is found to be transitional when either artificially raising the level of turbulence at the inlet or by using a highly refined mesh that induces the generation of turbulent spots that increase the heat transfer. The important refinement done improves the heat flux predictions to the point it is approaching the experimental data.

This content is only available via PDF.
You do not currently have access to this content.