Abstract

This paper aims to study the effect of varying the working line of a compressor onto the forced response vibrations of the blades of an integrally bladed disk (blisk). The investigated rotor belongs to a transonic research compressor, where various probes are placed to measure flow data at all stations and analyze blade vibrations. A single-passage CFD model of all compressor blade-rows is used for steady computations. Using a finite element model, the natural frequencies and mode shapes of the blisk across the operational range of the compressor are predicted. Thus, resonance conditions can be identified from the Campbell diagram. The variation of the compressor working line is investigated at 90% of the maximum shaft speed, where the resonance condition of the 11th blade mode family and the engine order corresponding to the aerodynamic distortion from the upstream stator vane is predicted. Using a single-passage model, time-accurate simulations of the investigated rotor are executed at various operating points, which cover the operational range of the compressor between choke and stall conditions. Aerodynamic damping ratios are calculated using the aerodynamic influence coefficients method at each point, in order to predict the resulting vibration amplitudes of the blades. Relatively high amplitudes of the modal aerodynamic forces are observed at the low working line. A detailed post-processing analysis is performed, as the change of flow incidence contributes largely in the increase of modal aerodynamic forces on the blade. The aerodynamic damping ratios increase with higher working lines, where the rotor achieves relatively higher pressure ratios. However, the damping decreases rapidly close to stall conditions. The trend of the predicted vibration amplitudes is compared to strain gauge measurements from the rig, which are registered during multiple acceleration maneuvers performed over different working lines. A strong correlation between the predicted and measured trends of the forced response vibration is witnessed.

This content is only available via PDF.
You do not currently have access to this content.