An aerodynamic design optimization study of the nozzle vane of a variable geometry turbine (VGT) turbocharger for a diesel engine application was conducted using the commercial software, ANSYS CFX and DesignXplorer. The nozzle design was optimized at three critical engine operating points. The nozzle shape was parameterized using key design parameters including theta angle, thickness value and opening angle. For a good balance of computational time and accuracy, the optimization approach adopted meta-models and response surfaces to represent the training data and reduce the number of simulations required to reach an optimal design.

Finally, more than 300 optimized designs were simulated to assess the performance and characteristics of each design. The final optimized nozzle design met all the design constraints and showed an improvement of up to 2% efficiency and reduced the maximum torque by 20% compared to the baseline nozzle.

This content is only available via PDF.
You do not currently have access to this content.