An efficient coupled approach between inviscid Euler and integral boundary layer solutions has been developed for quasi 3-D unsteady flows induced by vibrating blades. For unsteady laminar and turbulent boundary layers, steady correlations are adopted in a quasi-steady way to close the integral boundary layer model. This quasi-steady adoption of the correlations is assessed by numerical test results using a direct solution of the unsteady momentum integral equation. To conduct the coupling between the inviscid and viscous solutions for strongly interactive flows, the unsteady Euler and integral boundary layer equations are simultaneously time-marched using a multi-step Runge-Kutta scheme, and the boundary layer displacement effect is accounted for by a first order transpiration model. This time-resolved coupling method converges at conditions with considerable boundary layer separation.
Skip Nav Destination
ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
June 3–6, 1991
Orlando, Florida, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-7902-3
PROCEEDINGS PAPER
Inviscid-Viscous Coupled Solution for Unsteady Flows Through Vibrating Blades: Part 1 — Description of the Method
J. D. Denton
J. D. Denton
Cambridge University, Cambridge, England
Search for other works by this author on:
L. He
Cambridge University, Cambridge, England
J. D. Denton
Cambridge University, Cambridge, England
Paper No:
91-GT-125, V005T14A014; 8 pages
Published Online:
March 10, 2015
Citation
He, L, & Denton, JD. "Inviscid-Viscous Coupled Solution for Unsteady Flows Through Vibrating Blades: Part 1 — Description of the Method." Proceedings of the ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General. Orlando, Florida, USA. June 3–6, 1991. V005T14A014. ASME. https://doi.org/10.1115/91-GT-125
Download citation file:
486
Views
0
Citations
Related Proceedings Papers
Related Articles
Inviscid-Viscous Coupled Solution for Unsteady Flows Through Vibrating Blades: Part 1—Description of the Method
J. Turbomach (January,1993)
An Inverse Inner-Variable Theory for Separated Turbulent Boundary Layers
J. Fluids Eng (December,1992)
Related Chapters
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis