The impact of wake-induced unsteady flows on blade row performance and the wake rectification process is examined by means of numerical simulation. The passage of a stator wake through a downstream rotor is first simulated using a three dimensional unsteady viscous flow code. The results from this simulation are used to define two steady state inlet conditions for a three dimensional viscous flow simulation of a rotor operating in isolation. The results obtained from these numerical simulations are then compared to those obtained from the unsteady simulation both to quantify the impact of the wake-induced unsteady flow field on rotor performance and to identify the flow processes which impact wake rectification. Finally, the results from this comparison study are related to an existing model which attempts to account for the impact of wake-induced unsteady flows on the performance of multistage turbomachinery.

This content is only available via PDF.