This paper describes a programme of work, largely experimental, which was undertaken with the objective of developing an improved blade profile for the low-pressure turbine in aero-engine applications.

Preliminary experiments were conducted using a novel technique. An existing cascade of datum blades was modified to enable the pressure distribution on the suction surface of one of the blades to be altered. Various means, such as shaped inserts, an adjustable flap at the trailing edge, and changing stagger were employed to change the geometry of the passage. These experiments provided boundary layer and lift data for a wide range of suction surface pressure distributions. The data was then used as a guide for the development of new blade profiles. The new blade profiles were then investigated in a low-speed cascade that included a set of moving bars upstream of the cascade of blades 10 simulate the effect of the incoming wakes from the previous blade row in a multistage turbine environment.

Results are presented for two improved profiles that are compared with a datum representative of current practice. The experimental results include loss measurements by wake traverse, surface pressure distributions, and boundary layer measurements. The cascades were operated over a Reynolds Number range from 0.7 × 105 to 4.0 × 105. The first profile is a “laminar flow” design that was intended to improve the efficiency at the same loading as the datum. The other is a more highly loaded blade profile intended to permit a reduction in blade numbers. The more highly loaded profile is the most promising candidate for inclusion in future designs. It enables blade numbers to be reduced by 20%, without incurring any efficiency penalty. The results also indicate that unsteady effects must be taken into consideration when selecting a blade profile for the low-pressure turbine.

This content is only available via PDF.