The use of single crystal (SX) nickel-base superalloys will increase in the future with the introduction of SX blades into large gas turbines for base-load electricity production. Prolonged periods of use at high temperatures may cause creep deformation and the assessment of damage can give large financial savings. A number of techniques can be applied for life assessment, e.g. calculations based on operational data, non-destructive testing or material interrogation, but because of the uncertainties involved the techniques are often used in combination. This paper describes a material interrogation (metallographic) technique for creep strain assessment in SX alloys.

Creep tests have been performed at 950°C on the SX alloy CMSX-4 and quantitative microstructural studies performed on specimens interrupted at various levels of strain. It was found that the strengthening γ′-particles, initially cuboidal in shape, coalesced to form large plates or rafts normal to the applied stress. The γ-matrix phase also formed plates. CMSX-4 contains ∼ 70 vol % γ′-particles and after creep deformation the microstructure turned itself inside out, i.e. the gamma “matrix” became the isolated phase surrounded by the γ′-“particles”. This can cause problems for computerised image analysis, which in this case, were overcome with the choice of a suitable measurement parameter.

The rafts reached their maximum length before 2% strain, but continued to thicken with increasing strain. Although of different dimensions, the aspect ratios (length/thickness ratio) of the gamma-prime rafts and the gamma plates were similar at similar levels of strain, increasing from ∼1 at zero strain to a maximum of ∼3 at about 1–2 % strain.

Analysis of microstructural measurements from rafting studies on SX alloys presented in the literature showed that the aspect ratios of the γ- and γ′-phases were similar and that at a temperature of 950–1000°C a maximum length/thickness ratio of about 2.5–3.5 is reached at 1 to 2% creep strain. Measurement of gamma-prime raft or (or gamma plate) dimensions on longitudinal sections of blades is thus a suitable method for high temperature creep damage assessment of SX alloys. This gives a considerable advantage over conventional Ni-base superalloys whose microstructures are usually very stable with respect to increasing creep strain.

This content is only available via PDF.