A fundamental knowledge of the parameters affecting film condensation is essential for the design of two phase heat exchangers. The current study examines the effect of extended surfaces and surface energy modifications and their interaction for condensation of steam in quiescent and vapor flow conditions. The enhancement of heat transfer for vertical, flat surfaces and two finned surfaces were compared for Reynolds numbers ranging from approximately 10 to 50. The addition of a nonionic surfactant, alcohol alkoxylate, to the system was evaluated for the same surfaces and vapor field conditions. Vapor flow of 0.25 m/s enhanced the heat transfer approximately 40%, while 0.5 m/s vapor velocity produced almost 100% increase in heat transfer. The addition of surfactant to the system produced small enhancement in heat transfer except in the case of condensate hold-up between the fins. In this case, the addition of surfactant increase the heat transfer an additional 25%, likely because the vapor flow and change of surface energy were sufficient to largely eliminate the hold-up of condensate between the fins.

This content is only available via PDF.
You do not currently have access to this content.