Heat transfer in fluids is very important in many industrial heating and cooling equipments. Convective heat transfer can be enhanced passively by changing flow geometry, boundary conditions or by increasing thermal conductivity of the fluid. Another possibility to increase heat transfer with gas is to employ extended surfaces. When gas flows in a tube, septa with one or more openings can be used as fins. Furthermore, if the openings are arranged to give a spiral motion around the cylinder axis wall-fluid contact area increases. As a consequence the presence of the septa can significantly augment pressure drops. In this paper a numerical investigation is carried out on forced convection in circular isothermal tubes. The fluid is air and ideal gas model is employed. Septa are introduced and several shapes and arrangements are analyzed. The investigation is accomplished by means of the commercial code Fluent. A turbulence model is used. Results are presented in terms of temperature and velocity fields, local and average heat transfer coefficients and pressure drops. The aim of this study is to find the shape and arrangement of septa such to give high heat transfer coefficients and low pressure drops.

This content is only available via PDF.
You do not currently have access to this content.