Abstract

A three-dimensional time dependent computational fluid dynamic (CFD) study of laminar and turbulent thermal mixing of two flows entering a 90° T-junction pipe is presented. The two incoming flows (both liquids) in the T-junction enter the flow domain with different inlet velocities, and temperatures. Water flow is considered in both the horizontal pipe and the vertical pipe. Inlet temperature differences and temperature dependent thermophysical properties are considered. Large eddy simulations (LES) with sub-grid scale (SGS) modeling were considered for the simulation of the turbulent cases. The flow characteristics, and thermal mixing behaviors and detailed mixing structures were simulated, and they showed that thermal mixing of the two streams are closely affected by the inlet conditions of the two streams and the inlet thermophysical properties of the two streams.

This content is only available via PDF.
You do not currently have access to this content.