Abstract

Additive manufacturing (AM), also known as 3D printing technology, is applied to fabricate complex fin structures for heat transfer enhancement at inner surface of tubes, which conventional manufacturing technology cannot make. This work considered rectangular fins, scale fins, and delta fins with staggered alignment at the inner wall of heat transfer tubes for heat transfer enhancement of internal flows. Designed fin structures are trial-printed using plastic material to exam the printability. Laminar flow convective heat transfer has been numerically studied, and heat transfer performance of the tubes with 3D-printed interrupted fins has been compared to that with conventional straight continued fins. The benefit from heat transfer enhancement and the loss due to increased pumping pressure is evaluated using the total entropy generation rate in the control volume of heat transfer tube. As the conclusion of the study, better heat transfer tubes with 3D-printed internal fins are recommended.

This content is only available via PDF.
You do not currently have access to this content.