Gasoline compression ignition (GCI) offers the potential to reduce criteria pollutants while achieving high fuel efficiency in heavy-duty diesel engines. This study aims to investigate the fuel chemical and physical properties effects on GCI operation in a heavy-duty diesel engine through closed-cycle, 3-D computational fluid dynamics (CFD) combustion simulations, investigating both mixing-controlled combustion (MCC) at 18.9 compression ratio (CR) and partially premixed combustion (PPC) at 17.3 CR.

For this work, fuel chemical properties were studied in terms of the primary reference fuel (PRF) number (0–91) and the octane sensitivity (0–6) while using a fixed fuel physical surrogate. For the fuel physical properties effects investigation, PRF70 was used as the gas-phase chemical surrogate. Six physical properties were individually perturbed, varying from the gasoline to the diesel range.

Combustion simulations were carried out at 1375 RPM and 10 bar brake mean effective pressure (BMEP). Reducing fuel reactivity (or increasing PRF number) was found to influence ignition delay time (IDT) more significantly for PPC than for MCC due to the lower charge temperature and higher EGR rate involved in the PPC mode. 0-D IDT calculations suggested that the fuel reactivity impact on IDT diminished with an increase in temperature. Moreover, higher reactivity gasolines exhibited stronger negative coefficient (NTC) behavior and their IDTs showed less sensitivity to temperature change. When exploring the octane sensitivity effect, ignition was found to occur in temperature conditions more relevant to the MON test. Therefore, increasing octane sensitivity (reducing MON) led to higher reactivity and shorter ignition delay.

Under both MCC (TIVC: 385K) and PPC (TIVC: 353K), all six physical properties showed little meaningful impact on global combustion behavior, NOx and fuel efficiency. Among the physical properties investigated, only density showed a notable effect on soot emissions. Increasing density resulted in higher soot due to deteriorated air entrainment into the spray and the slower fuel-air mixing process. When further reducing the IVC temperature from 353K to 303K under PPC, the spray vaporization and fuel-air mixing were markedly slowed. Consequently, increasing the liquid fuel density created a more pronounced presence of fuel-rich and higher reactivity regions, thereby leading to an earlier onset of hot ignition and higher soot.

This content is only available via PDF.
You do not currently have access to this content.