Abstract

It is well-known that so-called Concurrent Engineering is a desirable alternative to the largely sequential methods which tend to dominate most product development methods. However, the proper implementation of a concurrent engineering method is still relatively rare. In order to facilitate the development of a reliable concurrent engineering product development method, we start with a careful definition of concurrent engineering and, after an extensive study of all of product development, we propose three criteria which ideal concurrent engineering must satisfy. However, for labor, time, and overall cost considerations, ideal concurrent engineering is infeasible. Instead, we propose a computer-based environment which, by being constructed in accordance with the three criteria, attempts to approach ideal concurrent engineering. The result is the Virtual Concurrent Engineering method and computer implementation environment. This product development method and computer-based implementation system provide the detailed, structured information and data needed to optimally balance the product with respect to the main product development parameters (e.g., manufacturing costs, assembly, reliability). This important information includes re-design suggestions to improve the existing design. The designer can directly apply these re-design suggestions for design optimization, or he can use the results as input into a more complex design optimization or design parameterization function of his own. To demonstrate Virtual Concurrent Engineering, we use it to refine earlier work done by the authors in the Design for Producibility of stamped products. We discuss, in some detail, the results of applying Design for Producibility to complex stampings, including process plans and product producibility computations.

This content is only available via PDF.
You do not currently have access to this content.