As a first approximation, a steel-belted radial tire can be modeled as a one dimensional rotating ring connected elastically to a moving hub. This ring can be modeled mathematically using a set of three nonlinear partial differential equations, where the three degrees of freedom are a radial displacement, a tangential displacement and a section rotation. In this study, only quadratic geometric nonlinearities are considered. The system is excited by a temporally harmonic point load f^(t) and a temporally harmonic hub motion z^(t) that have the same harmonic frequency. The point load f^(t) appears in the equations of motion as a single in-homogeneous term, while the hub motion z^(t) appears in inhomogeneous and parametric excitation terms. To simplifying the ensuing analysis, the rotation rate of the hub is assumed to be constant.

The partial differential equations of motion are reduced to a set of four second-order ordinary differential equations by using two linear normal modes to approximate the spatial distribution of the displacements. A region of the parameter space, as defined by ranges of values of the excitation amplitude z and the excitation frequency ω (or detuning parameter σ), is identified, from a Strutt diagram, where the parametric excitation is expected to be dominant. In this region σ is varied to locate a secondary Hopf bifurcation that leads to a set of complex steady-state quasi-periodic solutions. These solutions contain two families of frequency components where the fundamental frequencies of these families are non-commensurate, and they are characterized by Poincaré sections with closed or nearly closed “orbits” as opposed to the distinct points displayed by periodic responses and the strange attractor sections displayed by chaotic solutions.

This content is only available via PDF.
You do not currently have access to this content.