Abstract

In order to respond quickly to changes in market demands and the resulting product design changes, machine tool manufacturers must reduce the machine tool design lead time and machine set-up time. Reconfigurable Machine Tools (RMTs), assembled from machine modules such as spindles, slides and worktables are designed to be easily reconfigured to accommodate new machining requirements. The essential characteristics of RMTs are modularity, flexibility, convertibility and cost effectiveness. The goal of Reconfigurable Machining Systems (RMSs), composed of RMTs and other types of machines, is to provide exactly the capacity and functionality, exactly when needed. The scope of RMSs design includes mechanical hardware, control systems, process planning and tooling.

One of the key challenges in the mechanical design of reconfigurable machine tools is to achieve the desired machining accuracy in all intended machine configurations. To meet this challenge we propose (a) to distribute the total number of degrees of freedom between the work-support and the tool and (b) employ parallely-actuated mechanisms for stiffness and ease of reconfigurability. In this paper we present a novel parallely-actuated work-support module as a part of an RMT. Following a brief summary of a few parallel mechanisms used in machine tool applications, this paper presents a three-degree-of-freedom work-support module designed to meet the machining requirements of specific features on a family of automotive cylinder heads. Inverse kinematics, dynamic and finite element analysis are performed to verify the performance criteria such as workspace envelope and rigidity. A prototype of the proposed module is also presented.

This content is only available via PDF.
You do not currently have access to this content.