This paper presents a fast evaluation procedure for high-cycle fatigue (HCF) under multiaxial random loading. The recent multiaxial cycle counting method of Wang and Brown is used to identify the loading reversals. For each identified reversal, the effective shear stress amplitude is directly calculated from the component stress ranges by an equation derived from the MCE approach, which is a newly developed method to account for non-proportional loading effect. This shear stress amplitude and the maximum hydrostatic stress during the time period of an identified reversal are used to evaluate the fatigue damage for that reversal by Crossland’s criterion. The fatigue damage of the loading block is then calculated by summing the damages of all the identified reversals by Miner’s rule. Comparisons with other multiaxial HCF approaches show that the procedure is a computationally efficient and conservative engineering approach.

This content is only available via PDF.
You do not currently have access to this content.