A comprehensive parametric study is carried out on the longitudinal dynamics of a freight train having different loading patterns. A nonlinear time domain model, with one locomotive and nine wagons, is considered. In another simulation the train model has two locomotives and eight wagons, and in both models, every two cars are connected to each other through an automatic coupler. The effects of different load distribution patterns on the coupler forces for the cases of ascending, descending, constant, ascending-descending and descending-ascending are investigated through a parametric sensitivity study. In order to investigate how an empty wagon and its position in a train-consist model may affect the overall longitudinal dynamic behavior of freight trains a second computer simulation model has been developed. Moreover, the best possible position for the second locomotive with the objective of reaching to the lower longitudinal forces, in the case that an additional locomotive is included will be discussed. Finally, an investigation is carried out to determine the kind of couplers with their relevant specifications that must be installed in different positions of a train-consist in order to improve the longitudinal train dynamic behavior.

This content is only available via PDF.
You do not currently have access to this content.